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ABSTRACT

An automatic regridding method and a three dimensional shape design

parameterization technique are constructed and integrated into a unified

theory of shape design sensitivity analysis. An algorithm is developed

for general shape design sensitivity analysis of three dimensional

elastic solids. Numerical implementation of this shape design

sensitivity analysis method is carried out using the finite element code

ANSYS.

The unified theory of shape design sensitivity analysis uses the

material derivative of continuum mechanics with a design velocity field

that represents shape change effects over the structural domain. To

satisfy the requirement that the design velocity field be at least as

regular as the displacement field, displacement shape functions are used

to represent the design velocity field. This procedure provides an

isoparametric mapping. Automatic regridding methods are developed by

generating a domain velocity field with the boundary displacement

method. The boundary displacement method treats a perturbation of shape

as an external load to obtain the corresponding interior movements

through use of the governing structural equations. Automatic regridding

obtained in this manner preserves grid orthogonality and consequently

the accuracy of analysis and shape design sensitivity analysis. Shape

ii



design sensitivity of pointwise stress is obtained from domain averaged

stress sensitivity, by taking a limit. The boundary layer method,

coupled with the boundary displacement method, is shownto be an

efficient procedure for shape design sensitivity analysis.

Shapedesign parameterization for three dimensional surface design

problems is illustrated using a Bezier surface with boundary

perturbations that depend linearly on the perturbation of design

parameters. A linearization method of optimization, LINRM, is used to

obtain optimumshapes. Three examples from different engineering

disciplines are investigated to demonstrate the accuracy and versatility

of this shape design sensitivity analysis method. An engine bearing cap

and a doubly-curvatured arch damare analyzed and optimized. A total

hip joint reconstruction is studied for shape design sensitivity

analysis.

iii
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CHAPTER 1

INTRODUCTION

1.1 Introductory Comments and Literature Review

The first two decades of structural optimization were almost

totally focused on sizing design variables, such as cross-sectional area

and thickness. There is another important class of structural design

problems in which the structural geometric configuration or layout is to

be determined. In the last ten years, this class of problems has drawn

broad attention among researchers in academy and industry. The demand

for a general algorithm to perform shape optimization of structural

systems has grown, along with the development of CAD/CAM (computer aided

design/manufacturing). Several numerical methods have been developed

for shape design sensitivity analysis and optimization. One of the

first treatments in the general problem of selecting the shape of a

structure as the design variable was presented by Zienkiewicz and

Campbell [1]. They formulated the shape optimal design problem using

the finite element method, with the location of nodal joints of the

finite element model as design variables. They evaluated derivatives of

stiffness and load matrices with respect to design parameters to obtain

derivatives of structural response measures (displacement or stress

criteria) and employed sequential linear programming for numerical

solution. Since then, many shape optimal design problems have been



solved by the finite element formulation. Ramachrishnan and Francavilla

[2] used a penalty function method for numerical optimization of a

clamped circular plate, a pressure vessel and closure, and a simplified

gravity dam. Francavilla, Ramakrishnan, and Zienkiewicz [3] minimized

stress concentration for a fillet problem. Schnack [4] and Oda [5]

iteratively modified the contour of a notch to minimize the peak

stress. Imam [6] optimized an engine bearing cap with generic modeling

and a design component concept. Wassermann [7] optimized a three-

dimensional arch dam with prescribed shape functions. Braibant and

Fluery [8] optimized a beam in bending, a fillet, and a hole in a plate

using B-splines. Wang, Sun, and Gallagher [9] presented sensitivity

analysis in shape optimization of continuum structures by treating

locations of nodal points of the finite element model as design

parameters.

A more basic approach for surface contouring to minimize stress

concentration were initiated by Tvergaard in selecting the optimum shape

of a fillet [I0]. He employed a stress field model of the fillet, with

a finite dimensional family of perturbations allowed in the boundary

shape, which is defined in terms of coordinate parameters. He employed

a variational analysis of the stress field equations to obtain

derivatives of stress with respect to his design parameters and used

sequential linear programming to iteratively construct an optimum

design. Kristensen and Madsen [11] formulated a class of shape optimal

design problems for planar solids, which generalizes the approach of

Tvergaard [10]. Bhavikatti and Ramakrishnan [12] presented a refinement



of the formulations of Ref. I for optimum design of fillets in flat and

round _ension bars.

Methods of optimality criteria have been used only for selected

classes of shape optimal design problems. Kunar and Chan [13] used a

fully stressed criteria and selected geometrical variables to minimize

weight. Demsand Mroz [14] presented a general approach for shape

optimization. They used a boundary perturbation analysis to derive

optimality criteria and a finite element numerical method to determine

the optimum boundary. Dems[15] used this method to formulate and

numerically solve a variety of shape optimization problems to find

optimum shape of shaft cross-section for tortional stiffness. Seguchi

and Tada [16] applied the inverse variational principle to the potential

energy functional which is adjoined by the total volume constraint with

a Largrange multiplier to determine optimal shape of structures. 0da

and Yamazaki [16] used the optimumdistribution of material properties

to obtain fully stressed shapes.

Demsand Mroz [18,19] applied the variational approach for

sturctural optimization and shape design sensitivity analysis by means

of adjoint systems. They also present first and second order

sensitivity analysis of elastic structures, using a variational

approach. A function space gradient projection method of shape optimal

design of two-dimensional elastic bodies was presented by Chunand Haug

[20,21], using design sensitivity analysis methods similar to those

presented by Rousselet and Haug[22] and a gradient projection method of

the kind presented in Ref. 23. Cea, Zolesio, and Rousselet
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[24,25,26,27,28] presented techniques and applications from fields other

than structural optimization, for selecting optimum domain. They have

shownpotential for optimality criteria and direct numerical methods for

shape optimization of structures.

The method of Ref. 22 has been extensively expanded, both in theory

and numerical implementations to cover much larger class of structural

problems. Yoo, Haug, and Choi [29,30] applied this method to several

plane elasticity problems of considerable size, such as a gravity dam

and a connecting rod, by using the sparse matrix techniques [31]. Hou

and Benedict [32] used this method to a torsion problem with shape

constraints. Choi and Haug [33] developed shape design sensitivity

formulas for five different prototype problems of elastic structures.

Choi [34] studied shape design sensitivity analysis of displacement and

stress constraint functionals, with emphasis on the effect of point and

element movementwithin the domain, due to domain perturbation. Haug,

Choi, and Komkov[35] have developed a unified variational form of

structural design sensitivity analysis with a rigorous mathematical

foundation. Lee, Choi, and Haug[36] applied the method to build-up

structures with constraints on design variables, von-Mises yield stress,

nodal displacement, and natural frequency.

Yangand Choi [37,38] improved the accuracy of shape design

sensitivity for stress constraints by improving accuracy of boundary

information, using higher order finite element with more sophisticated

function evaluation schemesand smooth boundary representations. Yang

and Botkin [39] used this method to perform three dimensional solid
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shape optimization. Choi and Seong[40] further improved shape design

sensitivity accuracy by using domain information. They also introduced

a boundary layer idea to achieve efficient computation [41]. Choi,

Santos, and Frederick [42] implemented design sensitivity analysis of a

distributed design parameter system using ANSYSfinite element code.

Dopker and Choi [43] applied the method to both shallow and deep arch

shape design sensitivity analysis. Also, build-up structures that

include arches are investigated.

For more information relating to shape optimization literature, a

review was given by Haug[44] and a survey was presented by Haftka [45].

1.2 Objectives and Scope

In all the literature cited, only Refs. 6, 7, 9 and 39 are involved

with three dimensional shape problems. Most three-dimensional design

problems have been simplified to convert them to two-dimensional

problems. The main difficulties in general three dimensional shape

optimization lie in the high computational cost and complicated surface

shape design parametrization. Selection of design parametrization is a

crucial step for successful shape optimization. It has been observed by

several researchers [8,38] that an inappropriate scheme will lead to

undesirable designs. To perform shape design sensitivity analysis by

taking direct variation of finite element equation [9] is quite

expensive.

It is proposed in this work to use the unified theory of shape

design sensitivity analysis developed in Refs. 33-41, coupled with the



finite element method and parametric design representation using Bezier

curves and surfaces to construct an accurate and efficient algorithm to

perform general three dimensional shape design sensitivity analysis. In

order to demonstrate the generality of this method, numerical

implementations are constructed in a modulized fashion using a FORTRAN

77 programminglanguage to interface with the ANSYSfinite element

analysis code.

The unified theory of shape design sensitivity analysis of Refs.

33-41 is introduced in Chapter 2. This theory, based on the material

derivative of a continuum, defines a shape change as a design velocity

field. Material derivatives of displacement, domain averaged stress,

and pointwise stress are discussed. In Chapter 3, design

parametrization of the boundary is presented using Bezier curves and

surfaces.

In Chapter 4, numerical implementation of design velocity fields is

discussed. The design velocity field provides the relationship between

boundary perturbation and interior domain movement. To obtain this

relationship, the governing equations of linear elastic structural

systems can be used as the design velocity generator. The design

velocity field generated can be used for automatic regridding, or even

for grid generation. The boundary layer method [41] is also studied for

computational efficiency. An algorithm for efficient design sensitivity

computation is presented. In Chapter 5, shape design sensitivity

analysis is carried out for three numerical examples: an engine bearing

cap, a doubly-curved arch damand the total hip joint replacement.



Shape optimization of an engine bearing cap and an arch dam are

presented in Chapter 6. Discussions and conclusions are contained in

Chapter 7.



CHAPTER 2

DOMAIN METHOD OF SHAPE DESIGN

SENSITIVITY ANALYSIS

The fundamental concepts of the shape design sensitivity analysis

developed in the text by Haug, Choi, and Komkov [35] are discussed

briefly here. Details of rigorous mathematical derivation can be found

in Refs. 22, 26, 33, 35, and 40.

A brief introduction to three dimensional linear elasticity is

given in Section 2.1, as a convenient reference. Design velocity fields

are discussed in Section 2.2.1, while the material derivative for

different constraint functionals and the associated adjoint variable

method are discussed in Sections 2.2.2 to 2.2.5. The first variation of

the pointwise stress functional discussed in Section 2.2.5 is obtained

directly by taking a limit of the material derivative of domain averaged

stress functionals.

It was pointed out by Choi and Seong [40] that the domain integral

form of shape design sensitivity expressions will yield excellent

numerical result when results of finite element analysis are used to

evaluate shape design sensitivity expressions. Therefore, the domain

method of shape design sensitivity analysis of Ref. 40 is used here.

The boundary integral form will be used only when it is necessary to

account for boundary effects, such as the surface traction.
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2.1 Three Dimensional Linear Elasticity

Consider the three dimensional linear elasticity problem for a body

of arbitrary shape in the Cartesian coordinate system shown in Fig.

2.1. The displacement at each point of the elastic body, due to

external loads, can be defined by the displacement vector z = [z1, z2,

z3] T. The domain of this body is denoted by R, while its boundary is

denoted by I".

The strain tensor is defined here as [46]

"" i zj
eli(z)- (zj + )/21

(2.1.1)

where the subscript i denotes derivative with respect xi, while the

superscript i indicates i-th component of the displacement vector. The

stress-strain relation (the generalized Hook's law) is given as [46].

3

oiJ(z) = Z cijk£ek£(z), i,j,k,£ = 1,2,3 (2.1.2)

k,£=I

where Cijk£ is the elastic modulus tensor, satisfying symmetry relations

Cijk_ = Cjik_, Cijk_ = Cij_k, and Cijk£ = Ck_ij, i,j,k,£ = 1,2,3. The

equilibrium equations are [46]

3

Z ij (z) + fi = O,

j=l J
i = 1,2,3, xE R (2.1.3)

with the boundary conditions



I0

i
z : O, i : 1,2,3, xC rO (2.1.4)

and

° °

Tni(z) = Z olJ(z)nj = Ti, i = 1,2,3, x E r 2
j:l

(2.1.5)

and

Tni(z) = O, i = 1,2,3, x Er I (2.1.6)

where f = [fl, f2, f3]T E [C1(_)] 3 is the body force, vector

nj is the j-th component of the outward unit normal vector, and

T = [T I, T2, T3] TE [cl(r2)] 3 is the boundary traction vector.

The equilibrium equations of Eq. 2.1.3 can be reduced to a

variational identity by multiplying both sides of Eq. 2.1.3 by an

arbitrary displacement vector T = [-_1, _2, _3]TE [HI(R)] 3 and

integrating by parts to obtain

3 . 3 fi_ifff [ Z olJ(z)¢iJ(_)] d_-- fir [ Z ]d_
i ,j:l _ i:l

, °

÷ f/ [ Z °_J(z)nji] dr,
r i,j:l

for all TE[HI(R)] 3 (2.1.7)

Imposing the boundary conditions, the variational identity becomes a

variational equation,
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Figure 2.1 Three dimensional elastic solid
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Figure 2.2 Deformation process
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. °

aR(z,7) - Ill Z °iJ(z) cIj(T)dR
i ,j=l

3 fit i 3 Ti-ii: Ill [ Z + II [ Z ]dr
i:l r i:l

=_ _(T), for all -i E Z (2.1.8)

where Z is the space of kinematically admissible displacements;

Z : {z E [HI(R)]3: z i : O, i : 1,2,3, xE r O} (2.1.9)

In Eq. 2.1.8, aR(z,T) and _R(T) are denoted as the energy bilinear and

load linear forms, respectively.

2.2 Shape Design Sensitivity Analysis

In shape design sensitivity analysis, the varying shape of a domain

is treated as the design variable. The relationship between shape

variation of a continuous domain and the related variations in some

performance functionals can be naturally described by the material

derivative. Before the concept of material derivative is presented, the

design velocity field will be discussed first.

2.2.1 Design Velocity Field

The deformation process of a material domain R can be obtained by a

mapping T: x ÷x (x), x E R, with a pseudo time parameter 3, by
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x -= T(X,T),
T

RT --T(R,T), and (2.2.1)

r =-T(r,T).
T

The deformation process of _ to _T by the mapping T may be viewed

as a dynamic process of deforming a continuum, with T playing the role

of time. At the initial time T = 0, the domain is _. The initial point

x moves to xT = T(x,T), see Fig. 2.2. A design velocity can be defined

as [35]

dx

VfxT,T_,, _ T dT(x,T) _ @T(x,T) (2.2.2):d'_-= dT aT

Assuming T-1 exists, design velocity can be written as

V(XT,T) -
dx

dTT- @T@T[T-l(x T,_),T] (2.2.3)

In the neighborhood of T = 0, with certain regularity hypothesis, T can

be expanded using Taylor's series,

@T
T(x,T) = T(x,0) + T-_-(x,0) + .-.

Ignoring higher order terms,



14

T(x,_) : x + • V(x,0)

: x + • V(x), (2.2.4)

where

x = T(x,0) and V(x) : V(x,0).

2.2.2 Material Derivative of a

General Functional

In the deformed domain R_, the solution x (x)_ of the formal

operator equation

A z f, x C _, (2.2.5)

defines z : 0, x E r a mapping on R,
T

z (x) -z (x + _V(x)). (2.2.6)

The pointwise material derivative of z at xC R (if it exists) is

defined as [35]

z :dz_ [x + TV(x)] 1 3=0

lim3+0[z_[x + T V(x)]T - z(x)], (2.2.7)

If z has a regular extension to a neighborhood U
T T

as zT, then

of _, denoted again
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: z'(x) + vzTv (2.2.8)

where

z'(x) lim zT(x) - z(x)
= T+O [" • ] (2.2.9)

is the partial derivative with respect to • and

Vz = [Zl, z2, z3]T

Consider now a functional defined as an integral over RT,

'1 : fff f (x) dR
R

T

: fff fZx + _V(x)] IJl dR (2.2.10)
R

where f is a regular functional defined in R and J is the Jacobian
T T

matrix of the mapping T. The material derivative of 91 at R is [35]

j_l :-d'_ fff f[x + W(x)] IJl d_ _:0

= fff [f' + vfTv + f(div V)] dR (2.2.11)
R

For a regular functional g defined as an integration over r [35],
T
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¢2 : If g_(x )dr : If g_(x+TV(x)) IJl,uj-Tn" dF (2.2.12)
F F
T

the material derivative is [35]

,_ _ ddx ff
r

g_(x + TV(x)) IJ[ _j'Tnu dr I _=0

= ff [g'(x) + (vgTn + Hg(x)) (vTn)] dr

F

(2.2.13)

For a special case of Eq. 2.2.12 [35], where

g_(x_) : h_(x_)Tn_, (2.2.14)

the material derivative is

_p_ : ff [h'(x)Tn + div h(VTn)] dr (2.2.15)
r

For kinematically admissible virtual displacement-z, it is shown in Ref.

35 that

_" = _" + v_'Tv = O. (2.2.16)

Taking the material derivative of both side of Eq. 2.1.8,

[a(z,_)]' _ a'(z,_) + a(z,_) = _(T), for all 7 E Z (2.2.17)
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Applying Eq. 2.2.11 to the energy bilinear form of Eq. 2.1.8 and

expressing the result in terms of displacement and design velocity

field,

3

a(_,T) = fff Y

R i,j=l

3

a'(z,7) = fff Y

R i,j=1

[oiJ(z)¢iJ (T) ] dR

[- _iJ(z) (vTiTvj) - oiJ(T) (vziTvj)

(2.2.18)

+ iJ(z)ciJ(T) (div V)] dR (2.2.19)

Applying Eqs. 2.2.11 and 2.2.13 to the load linear form of Eq. 2.1.8,

the material derivative of the load linear form is

3

L'(T) : fff Z
R i:l

[-zicvfiTv) + fi_-i (div V)] dR

3 3

÷ ff { " Z Ti(v_'iTV) + (V[ Z Ti-ii]n
r i=1 i=1

3

+ H[ Z TiTi]) (vTn)} dF (2.2.20)
i=1

The symbol H in the last term of right side of Eq. 2.2.20 denotes the

curvature of the boundary r. Complete details of this derivation

contained in the text by Haug, Choi, and Komkov [35].

Equation 2.2.17 is recasted to obtain the result
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a(; ,,7) = _,'(7) - a' (z ,T)

3

= fff
i ,j=l

[oij(z) (v_-iTvj) + (ij(_) CvziTvj]

i ° °

- (_ J(z)¢lJ('Z) (div V)] dR

3
+ fff

i:l

_icvfiTv ) + fiTi (div V)] dR

3 3 Ti_i+ If {" Z Ti( _iTv] + (v[ Z In

r i=1 i=1

3 Ti_£i+ H[ Z ]) (vTR)} dr (2.2.21)
i=1

In the right hand side of Eq. 2.2.21, the first three terms are obtained

from the expansion of a'(z,z-), while the fourth and fifth terms are from

the material derivative of the load linear form of body force, and the

sixth and seventh terms are from the material derivative of the load

linear form of surface traction.

2.2.3 Material Derivative of Displacement

Consider the pointwise displacement constraint at a point x,

_1-- zk(x) = fff _(x-x) zk(x) dR, xE R (2.2.22)

where _(x) is the dirac measure at the origin. The material derivative

of _1 is
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_ : Sff a(x-x) _k(x) dR, , x E R (2.2.23)
R

To express 9_ explicitly in terms of design velocity V(x), an adjoint

equation is defined as [35],

a(_,_) : fff _(x-x) _ dR, for all T EZ (2.2.24)
R

With smoothness assumptions, Eq. 2.2.24 is equivalent to the formal

operator equation

3
Z

j=l
_J(L) : _(x-x) aki,

where 6ki is the Kronecker delta.

conditions:

x E R (2.2.25)

With the following boundary

_i = 0, i = 1,2,3, x E r 0, and

3

Z _iJ(_)nj = 0, i = 1,2,3, x E flu r 2. (2.2.26)
j:l

Equations 2.2.24, 2.2.25, and 2.2.26 imply that the adjoint variable

can be evaluated by solving Eq. 2.2.24 with a unit force applied at
A

point x, in the direction k. Equation 2.2.24 can be evaluated

at _ : z, since zE Z,

a(_,_) : fff _(x-x) _k dR (2.2.27)
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The identity of Eq. 2.2.21 can be evaluated at T = _, since both

and _ E Z, to obtain

a(z,_.) : £'(>,) - a'(z,),) (2.2.28)

Based on Betti's reciprocal theorem, the energy bilinear form is

symmetric with respect to its arguments. Therefore, the left sides of

Eqs. 2.2.27 and 2.2.28 are equal, thus yielding

a(_,z) : a(z,_) (2.2.29)

That is,

¢_ = fff _(x-x) :_k d_ : L'(>.) -a'(z,_) (2.2.30)

To evaluate ¢_ in Eqs. 2.2.30, Eq. 2.1.8 and 2.2.24 must be solved

to obtain z and _, respectively. Then,

3

_'1 : fff Z
i ,j:l

[oij(z) (v>.iTvj) + ij(L) (vziTvj)

• • • ,

- cIJ(z)cIJ(),) (div V)] dR

3
+ fff Z

R i=1

[xi(vfiTv) + fixi (div V)] d_

3

+ff {-Z
r i=1

3

Ti (v},iTv) + (v[ Z Ti_i] n
i=1

3

+ H[ Z Ti_i])(vTn)} dr

i=1

(2.2.31)
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2.2.4 Material Derivative of General
Stress Functional

Let g(_(z)) be a function of stress, such as principal stress,

octahedral, or von-Mises equivalent stress. Then the averaged stress

functional over a small region R G R is
P

92 = SSSR g(a(z))mp dR

--.fff 9(_(z))d_/fff dR (2.2.32)
R

P

where mp is a characteristic function [35], defined as

I : 1/fff dR, x E R
R P

1 P (2.2.33)
mp = 0 , x E R/Rp

The material derivative of _2 is

*_ = fff (g' + vgTV + g(div V))rap dR
R

- fff_ gmpdRfffR(div V)mpdR

which can be rewritten as [35]

(2.2.34)

3

*_ : fff Z g ..
R i,j=l (_lj

3 3

÷ fff Z[Z
R k=1 i,j=l

(z) [(_ij({,) . aij(vzTv)]mp dR

g(ij(z) o_J(z)vk]mp dR

÷ fffR g(div V)mp dR- fffR g mpdR fffR (div V)mp dR (2.2.35)
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Using the relations [40]

(i j ( 9zTV ) 3=
k,_:l

k£_- kT
Cij lvz_ V + vzkTv_], and

3 3

Z (_J(z) vk = Z
k=l k, 4=1

k_:- kT,
Cij Lvz_ v) (2.2.36)

Eq. 2.2.35 can be reduced to

3

_ = fff [ Z
R i ,j=l

3
" fff Z

R i,j:l

• •

g(ij(z)alJ(;_)]mp dR

[gaij(z)cijk_cvzkTv_)mp dR

÷ fffR g(div V)mp dR- fffR g mp d_ fff_(Div V)mp dR
(2.2.37)

The adjoint equation in this case is

3

a(_,"_) : fffR i,j:lZ g(ij(z) aIJ-(}')mp dR,
for all _ E Z (2.2.38)

which corresponds to the formal operator equation

3 . 3 3

- _Z_3().) = - Z ( Z g k;_(z)ckLiJmp)j,
j 1 j=l k,_=l o

= 1,2,3, xER

(2.2.39)

with the same boundary conditions as in Eq. 2.2.26. Evaluating Eq.

2.2.38 at -_ = z, since z E Z,
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3

a(>,,_) = fff

i,j=l
g ij(z)aiJ(z)mp dR (2.2.40)

Also, Eq. 2.2.21 can be evaluated at T : _, since both T and L E Z,

a(z,_) : _'(>,) - a'(z,),) (2.2.41)

Due to symmetry of the energy bilinear form, Eqs. 2.2.40 and 2.2.41 are

equal, and the first term on the right side of Eq. 2.2.37 can be

replaced by Eq. 2.2.41. Therefore, _ becomes

3

_"2 : fff Z
R i,j=l

[_iJ(z) (v_,iTvj) + oiJ(},) (vziTvj)

i
- o J(z)¢iJ(_) (div V)] dR

3
÷ fff Z

R i=1
[licvfiTv) + fill (div V)] dfi

3 3

÷ ff {- Z Tic vliTV) + (v[ Z Tili] n
r i=1 i=1

3

+H[Z
i=1

Ti_i]) (vTn)} dr

3 3

- fff Z [ Z
R i,j=l k,_=l

g ij(z)cijk_(vzkTv£)mp dfi

÷ fff g(div V dR- fff dR fff (div V dR
R )mp R gmp R )mp

(2.2.42)

Note that the last three terms of Eq. 2.2.42 are nonzero only on the

small test region Rp.
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For a very smooth stress state, the domain averaged constraint

functional is sufficient and economical in representing structural'

performance measures, since the entire domain can be covered by a finite

number of constraints. For example, each finite element may be

considered as a test region. For large stress variations, a very small

test region should be considered for domain averaged stress, in order to

obtain meaningful performance measures of the structure for shape design

problems. For example, stress at a nodal point may be considered as a

performance measure [7,8,9,39]. However, it is well known that most

finite element approximations do not provide continuous stress at a

nodal point. To alleviate this difficulty, a Gaussian point can be

considered to measure stresses. For continuous stress, design

sensitivity of the pointwise stress can be obtained as a special case of

the domain averaged form. That is, it can be derived directly from

domain averaged form by taking the limit as the test region shrinks to a

point. Since Gaussian points are the optimal locations to sample

stresses, it is recommended that the test region to be shrunk to a

Gaussian point. Furthermore, stress is continuous at the Gaussian point

in finite element approximations.

2.2.5 Material Derivative of Pointwise

Stress Functional

For smooth domain and data, stress will be continuous. In this

case, a pointwise stress functional can be considered for design

sensitivity analysis. Define the pointwise stress functional 43 as
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_3 = fff _(x-x) g(o(z)) d_ (2.2.43)

^

where x is the Gaussian point at which stress sensitivity is to be

evaluated. Equation 2.2.43 can also be obtained from Eq. 2.2.32 by

taking a limit. That is, if the test region Rp shrinks to the
A

point x ERp, the characteristic function mp will become a Dirac

measure. An adjoint equation for this case can be obtained by taking

A

the limit of Eq. 2.2.38 as R shrinks to the point x,
P

3

a(_,_) = fff 6(x-x) _ g. (z)oiJ(T) dR (2.2.44)

R i,j:l (lJ

For the design sensitivity expression, taking the limit of Eq. 2.2.42

A

as R shrinks to x,
P

3

¢'3 : fff Z
R i,j=l

[oiJ(z) (v),iTvj) + oiJ(_) [vziTvj]

. i(_ J(z)ciJ(_) (div V)] dR

3

÷ fff Z
R i=1

[xi(vfiTv] + fi_i (div V)] dR

3

+ff {-Z
r i=1

3

Ti(vxiTv] + (v[ Z Ti),i]n
i=1

3

+H[Z
i=1

Tixi]) (vTn)} dr

a(x-x)
3

Z
i,j=l

3

[Z
k,_=l

gaij (z)cijk£(vzkTvL)] dR (2.2.45)
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A

The last two terms of Eq. 2.2.42 disappear as R shrinks to point x.
P

This can be seen easily, since the characteristic function mp becomes a

Dirac measure, and the last two terms of Eq. 2.2.42 cancel each other.

It has been shown in Ref. 40 that a C1 regular velocity field is

sufficient for shape design sensitivity analysis of elastic solid

problems. However, in observing Eqs. 2.2.31, 2.2.42, and 2.2.45, this

regularity condition can be relaxed. Since the highest order derivative

of the velocity field is one, a CO regular velocity field may be used

with an integrable first derivative [40]. Therefore, regularity of the

velocity field must be at least at the level of the displacement field

of the structural component treated.

Notice also that design velocity is involved in each term of all

shape design sensitivity expressions given in Eqs. 2.2.30, 2.2.42, and

2.2.45. An abstract form of the material derivative of displacement and

stress functional may be presented as

: f.J'f fo(Z,),,V)dR + .ff gO(z,_.,V) dr (2.2.46)

Hence, it is necessary to define design velocity field both on the

domain and the boundary. The boundary velocity can be obtained directly

from the boundary shape perturbation, but the interior domain velocity

must be constructed in certain manner to reflect the influence of the

boundary perturbation upon the entire domain. When the finite element

method is used to perform shape design sensitivity analysis and

optimization, computation of design velocity field is of great
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importance to the success of shape optimization, especially when a very
p

large shape change is involved, since the original finite element grid

may be subjected to severe distortion during deformation of shape and

result in numerical difficulties, as observed in Ref. 38. There are,

however, infinitely many ways to define the design velocity field for a

given boundary perturbation. Two methods of defining domain velocity

fields are considered here. First, the relation between the boundary

perturbation and domain perturbation may be considered as a purely

geometric problem and solved it by geometric rules. In the second

method, the relationship can be obtained from a physical problem, and

solved using the associated governing equations. The geometric approach

is straight forward and cheaper to use. However, when it is necessary

to preserve regularity of the finite element grid, the second approach

is favorable, since a regular design velocity field (finite element

grid) can be obtained.
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CHAPTER 3

DESIGN PARAMETERIZATION

In structural shape design optimization, the varying boundary is

treated as the design variable. Therefore, it is necessary to perform

boundary shape design parametrization. The result of shape optimization

is naturally limited by the design parametrization used. To reach a

better optimal shape design, the design parametrization must be general

and flexible enough to represent a large class of structural shapes.

In the literature, Francavilla et al. [3] applied quadratic and

fifth degree polynomials for a fillet and a connecting rod,

respectively. Reinschmidt and Narayanan [47] used a hyperbolic curve in

optimizing the shape of a cooling tower. Bhavikatti and Ramakrishnan

[48] used a third order polynomial in optimizing the cross section of a

pressure vessel and nozzle junction. They also used a general third

degree function in the coordinates of x and y axis to optimize the shape

of shoulder fillets in tension bars and T-heads [12]. Queau and

Trompette [49] used straight lines and circles to describe a boundary.

Tai et al. [50] optimized the shape of an airfoil, using a combination

of three baseline shapes. More recently, Wassermann [7] defined

position and tangent vectors as design variables to optimize a three

dimensional arch dam. Braibant and Fluery [8] adopted B-spline and

Bezier curves to optimize the shapes of a bending beam, a fillet, and
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a hole in a plate. Choi and Seong [41] used B-splines and velocity

elements to optimize a fillet. Iman [6] categorized the shape

parametrization scheme as independent node movement, design element,

super curves, and superposition of shapes.

Among techniques developed in the field of computer aided geometric

design [51,52], it is not clear which method fits the purpose of

parametric shape representation best. Several factors, such as

efficiency in application, smoothness, fairness and continuity of the

curves generated, flexibility, generality, and controlability in global

or local senses must be considered. Global control means that the

effect of design perturbation will spread everywhere in the varying

boundary, while local control means the effect of design perturbation

will be limited in a local region along the varying boundary. It is

also desirable to have a variation diminishing property, so that the

perturbed shape will retain the level of smoothness of the original

shape.

In the spline family, B-splines are most widely used in shape

modeling, since B-splines have most of the desirable characteristics

mentioned above. B-splines has been applied in shape optimization in

Refs. 8 and 40. Low order B-splines provide local control only. One

possible drawback of local control is that an unrealistic design may

occur, when a large shape perturbation is induced by a small

perturbation in the structural response. This has been observed in Ref.

8. To solve this problem, either higher order B-splines are used or

some optimization constraints, such as the boundary regularity

constraints [53], can be introduced to achieve global control.
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The Bezier curve is a special case of the B-spline that can be

generated in a simpler fashion. It has been applied in car body design

by engineers of Renault automobiles for nearly two decades. For

simplicity, Bezier curves and surfaces are selected here to demonstrate

the process of boundary shape design parametrization. In the following

discussions, several properties of Bezier curves and surfaces will be

reviewed and used to develop the boundary parametrization.

3.1 Boundary Shape Design Parametrization

and Boundary Velocity

Boundary shape design parametrization may be considered as a linear

mapping X from a design parameter b = [b1, b2, .... bN] to the xi-

coordinate of the varying boundary, denoted by a position vector xi(b)

(Fig 3.1). That is X: b ---> xi(b), where

xi(b ) = S1b I + S2b 2 + ...... + SNb N, (3.1.1)

with Sn as shape functions determined by the mapping used. To cover a

broad class of structural shapes, Sn can be defined as polynomials,

spline functions, or base shapes.

Perturbation of the boundary, denoted by 6xi(b), due to

perturbation (6b) of design parameters is determined by taking the

variation of both sides of Eq. 3.1.1. That is

N

6xi(b) = Z Sn 6bn, (3.1.2)
n:l
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On the varying boundary segment, the boundary perturbation is

interpreted as the boundary velocity.

Let the i-th componentof the boundary velocity, due to

perturbation of design parameters be denoted as Vi(b),

Vi(b) - axi(b) :
N
Z Sn6bn (3.1.3)

n=l

For example, let a second degree polynomial f(xl) be used to describe

the x2-coordinate of a segmentof a curved boundary spanned by three

nodes, as shownin Fig. 3.2.;

or

x2(b ) = f(xl) = blX12 + b2x I + b3

x2(b ) = f(xl) = [x12 xI [bij1] b2

b3

Let design variable b be perturbed by 6b.

curve is

(3.1.4)

(3.1.5)

Then the perturbation on this

F bll
_x2(b): 6f(x1): [x12xI I]l_b2|

which is the boundary velocity V2(b), according to Eq. 3.1.3.

Design parameters bl, b2, and b3 for a given curve can be

determined in the following manner. Let PlXl , P2Xl , and P3Xl be x1-

coordinate of three different nodes on the curve, and let the design

parametrization mapping be expressed in matrix form in terms of nodal

coordinates; i.e.,

(3.1.6)
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(3.1.7)

With given nodal coordinates, bl, b2, and b3 can be obtained by solving

Eq. 3.1.7.

3.2 Bezier Curves and Surfaces

3.2.1 Bezier Curves

The Bezier curve [54] P(v) is constructed by taking a linear

combination of a Bernstein basis with certain weights. The Bernstein

basis functions Bn,N(V ) are generated from a t;inomial factorial F(N,n)

as

Bn,N(V) = F(N,n) vn (l-v)N-n (3.2.1)

where F(N,n) = N!/(n!)[(N-n)!], 0 < v • I, N is the degree of the basis,

and n denotes the particular weight in the ordered set (n = O, 1, 2,

..., N).

Taking a linear combination of Bn,N(V) with different weight

coefficients Cn, n = O, 1, 2, ..... N, different Bezier curves P(v) can

be obtained as

N

P(v) = Z C B v) (3.2.2)
n=O n n,N (
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For example, a set of 6 blending functions are shown in Fig. 3.3, where

N : 5 and n : O, I, 2, 3, 4, 5. For simplicity in indexing, Bn(V) is

used to denote Bn,N(V).

The weights Cn can be interpreted as vertical positions of control

points, as shown in Fig. 3.4. The control points form a series of

convex hulls, and the related Bezier curve will always lie within these

convex hulls. For example, let a Bezier curve be defined as

3

P(v) : Z CnBn(V), n : 0,1,2,3 (3.2.3)
n=O

: CoBo(v ) + CIBI(V) + C2B2(v) + C3B3(v)

In Fig. 3.2.2, note that at the first node, v = O, P(O) = C0 (since

Bo(O ) = i), and BI(O) = B2(O) = B3(O) = O. Similarly, at the fourth

node, v = 1, P(1) = C3, (since B3(1) = 1), and BO(1) = B1(1) = B2(1) =

O. That is, the starting and end node of the Bezier curve coincide with

the first and last control points, respectively. The middle two nodes

are linear combinations of four nonzero components, so no direct

relationship can be identified.

A plane curve Pxi(v) in the Cartesian Xl-X2 plane can be written in

Bezier blending form. For clarity, a matrix form can be used to

represent a Bezier curve with N+I control points as

ClX i

Pxi(v ) : [BoBI...BN] .• ,

CNXi
n

i = 1,2 (3.2.4)



35

Bi.s

1

I
/,,.,X "Z

i/ /_=._1._t_
L,/Fj.F-'__

/
-"/\....
X \
p,\\

Figure 3.3 Bernstein basis

Co

0.0

cI

_- _._. c2

P(v) _\\

C3

1.0

v

Figure 3.4 Bezier curve



36

where CnXi is the xi-coordinate of the n-th control point. For a curve

in space, simply add the x3 componentin Eq. 3.2.4. An example of a

plane curve Pxi(v) is given in Fig. 3.5.

Perturbation of the Bezier curve, due to a perturbed control point,

can be easily obtained. For example, let the xi-coordinate of control

point Cn, n = 0,1,..,N, be perturbed by 6CnXi. Then the perturbation of

the Bezier curve can be obtained from Eq. 3.2.4 as

6Pxi(v ) : [BoBI...BN]

CNXi

, i = 1,2 (3.2.5)

In Eq. 3.2.5, 6Pxi(v) is the perturbation of a Bezier curve, due to

perturbation on the position of control point Cnxi, n = 0,1,...,N.

Equation 3.2.5 showsthat perturbation of the curve Pxi(v) due to

perturbation of the xi coordinate of the control point Cn is the

Bernstein basis multiplied by the perturbation 6CnXi (Fig. 3.6).

Bezier curves have several characteristics that are very important

in geometric parametrization. These properties are as follows [55]:

1. Control Points. Although not all control points lie on the Bezier

curve, it is not difficult to predict the locations of control

points relating to the curve, since each control point exerts a

'pulling' effect on the curve near it. The Bezier curve does pass

through the two endpoints, and the curve is tangent at the endpoints

to the related edge of the polygon of control points.
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2. Multiple values. The parametric formulation of the Bezier curve

allows it to represent multiple-valued shapes. I_ fact, if the

first and last control points coincide, the curve is closed. This

is demonstrated in Fig. 3.7.

3. Axis independence. The Bezier curve is independent of the

coordinate system used to locate control points.

4. Global control. Global control can be seen from Eq. 3.2.2. All

basis functions are nonzero almost everywhere (except at the two

ends v = 0 and v = 1). Consequently, the location of a control

point will influence the curve shape almost everywhere.

5. Variation-diminishing property. Bezier curves are variation-

diminishing. Further, a curve is guaranteed to lie within the

convex hull of the control points that define it [56]. This can be

seen in Fig. 3.5. Thus the Bezier curve never oscillates wildly

away from its defining control points.

6. Versatility. The versatility of Bezier curves is governed by the

control points assigned. In the example of Fig. 3.5, six control

points are used (N=5) to determine two parametric fifth order

polynomial functions that specify xI and x2 values. More control

points can always be used to represent more complex shapes, but the

high-order polynomial equations become difficult to use because of

the lack of localized control. To solve this problem, several low-

order Bezier curves may be pieced together, with certain continuity

conditions, to describe a more complex curve.
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7. Order of continuity. Pieced Bezier curves can have different orders
J

of continuity at joints. To achieve zero-order continuity at a

joint, it is necessary only to make the end control points of two

curves coincide (Fig. 3.8). To achieve first order continuity, the

edges of two polygons adjacent to the common endpoints must lie in a

line (Fig. 3.9). Thus it is rather easy to locate control points to

achieve first-order continuity. Higher-order continuity can be

ensured by geometric constraints on control points, but beyond

first-order continuity the construction becomes complicated.

8. If C1 = C2 = ...... = CN = CO, then Eq. 3.2.2 becomes

N

P(v) : CO Z Bn(V) = Co (3.2.6)
n=O

that is

N

Z Bn(V) = 1 (3.2.7)
n:O

This means that when the control points are located on a straight

line, the associated Bezier curve will also lie on the same straight

line.

For a curved shape, it is necessary to perform the following

procedure to determine positions of the control points corresponding to

a given boundary. The process is outlined by the following four steps:
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STEP 1

Select a set of points Pm, m : I, 2, ..., M, on the curve.

Normalize the xi-coordinates of all nodes. That is, let the x i-

coordinate of node Pm be denoted by Pmxi and the normalized xi-

coordinate of node Pm be denoted by vm,

vm = (Pmxi - PlXi)/IPMXi - PlXil, (3.2.8)

STEP 2

With the xi-coordinates of M nodes normalized, the position of M

nodes in each of the M Bernstein basis can be found by using the

normalized xi-coordinates in Eq. 3.2.1 as v. This step will result in

an M x M matrix [BMTX]. The components of this matrix are,

Bo(V 1) BI(V 1) - . . BN(Vl)

Bo(V 2) BI(V 2) - . . BN(V2)

Bo(V M) BI(VM) - _ _ BN(VM)

(3.2.9)

where N = M-1 and Bn(Vm) denotes the n-th Bezier basis evaluated at Vm,

the normalized xi-coordinate of the m-th node in the given curve.

STEP 3

Equation 3.2.4 can be converted to a matrix form by replacing the

Bezier basis with the matrix of Eq. 3.2.9. That is,

{PmXi } : [BMTX] {CmXi}, i : 1,2 (3.2.10)



42

In Eq. 3.2.10, {PmXi } is a vector with M components denoting xi-

_oordinate of selected nodes and {CmXi} is a vector with M components

denoting xi-coordinates of the unknown control points, while [BMTX] is

an MxM matrix constructed in Eq. 3.2.9. The matrix [BMTX] is invertible

[57]. Therefore, Eq. 3.2.10 can be solved to obtain {CmXi},

for a given {PmXi}.

3.2.2 Bezier Surfaces

The construction of a Bezier surface is similar to that of a Bezier

curve. The Bezier surface generating equations are given by [54]

M N

Pxi(v,w) = Z Z CmnXi Bm,M(V) Dn N(w) (3.2.11)
m:O n:O

where Bm,M(V) and Dn,N(W) are two sets of Bezier curve blending

functions, given in Eq. 3.2.1, and CmnXi denotes the xi-coordinate of

control point Cmn, i = 1,2,3. For example, a 4x4 Bezier surface is

illustrated by solid lines in Fig. 3.10, while the polygons formed by

the control points are shown as dashed lines.

The procedure of obtaining the positions of control points for a

given surface is very similar to that for a curve. This procedure is

the same for all x1, x2, and x3-coordinates:

STEP 1

Define an M-row and N-column matrix of xi-coordfnates of the nodes

on a given surface, and perform discretization on parameter v for row
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and column directions, in the same way as that was discussed in step 1

of Section 3.2.1.

STEP 2

Form two Bezier matrices [BMTX] and [DMTX], in the same manner as

that was shown in Eq. 3.2.9. Here [BMTX] is an MxM matrix and [DMTX]

is an NxN matrix.

STEP 3

Similar to the case of a Bezier curve, Eq. 3.2.11 can be converted

to matrix form by replacing the two Bezier basis Bm,M(V) and Dn,N(V)

with the two matrices [BMTX] and [DMTX],

[PmnXi ] : [BMTX] [CmnX i] [DMTX]

MxN MxM MxN NxN

(3.2.12)

where [PmnXi ] is a matrix denoting the MxN xi-coordinates of the nodes

selected. Since both matrices [BMTX] and [DMTX] are non-singular [57],

their inverses exist. The matrix [CmnXi ] contains the xi-coordinates of

control points Cmn and can be obtained from

[CmnXi ] = [BMTX] -1 [PmnXi ] [DMTX] "1

MxN MxM MxN NxN

(3.2.13)
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Perturbation of a Bezier surface can be determined in a manner

similar to that o( a Bezier curve. Let 6Pxi denote a perturbation of

the xi-coordinate of a Bezier surface, due to a perturbation the xi-

coordinate of the control point Cmn, m = O, 1, .., M, n = O, 1, .., N.

Then, 6Pxi can be expressed as

6Pxi(v,w ) : [BoBlO..BN]

_Cooxi 6ColXi .-. 6CoMXi

6C10xi 6CllX i ..- 6CiMXi

: • ,.. .

6CNoxi 6CNIXi -.- 6CNMXi

DO

D1

i

B -e

(3.2.14)

For example, when a 4x4 Bezier surface is perturbed by perturbing the xi

position of control point C12, the matrix form can be written as

i--[BoBIB2B3]

0 0 0 0

0 0 6C12x i 0

0 0 0 0

0 0 0 0

 Do]
DI

iD21
(3.2.15)

3.2.3 Design Parametrization with
Bezier Curves and Surfaces

It is interesting to note that perturbation of Bezier curves and

surfaces in Eq. 3.2.5 and Eq. 3.2.14 are linearly depending upon the

perturbation of position of the control points. This suggests that the

positions of control points can be used as shape design parameters.

If the xi position of control point Cnx i or Cmnx i is considered as

design parameter bn or bmn, then a perturbation of the Bezier curve or
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surface corresponding to this control point can be interpreted as a

boundary velocity. For a Bezier curve, Eq. 3.2.8 yields

Vi(b) : aPxi(v) : [BoBI..-BN]

6Coxi

6ClXi

6CNXi

, i = 1,2 (3.2.16)

For a Bezier surface, Eq. 3.2.14 yields

F6Coox i

V i(b) : 6Pxi(v,w ) : [BoBI..-BN] laClo,xi

L'c.oxi

6C01x i -.. 6CoMX i"

6C11x i .-. 6CIMX i

aCNIX i • 6CNMX i

iool
D.I

• i

• i

L.DM]

(3.2.17)

In Chapter 2, it was noted that shape design sensitivity analysis

requires a domain velocity field. If N design parameters are defined,

it is necessary to determine N sets of domain design velocity fields.

This can be done by perturbing each design parameter, to obtain the

corresponding boundary velocity, and using either the geometric approach

or the boundary displacement approach to determine the associated domain

velocity field.
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CHAPTER 4

AUTOMATIC REGRIDDING AND

DESIGN VELOCITY FIELD

Numerical analysis of a structure, using a finite element or finite

difference method, requires discretizing the entire structure into a

finite grid. Accuracy of analysis results is greatly influenced by the

size and aspect ratio (squareness) of the grid. The art of generating a

grid to achieve accurate analysis has been studied by many

researchers. Zienkiewicz and Phillips [58] developed an automatic mesh

generation scheme for plane and curved surfaces, using 'isoparametric'

coordinates. Buell and Bush [59] presented a survey on mesh generation,

covering many nodal generation and element generation schemes; straight

line interpolation, sides-and-parts, simplified finite difference,

electro- mechanical hardware, and equipotential methods. Thacker [60]

presented a brief review of techniques for generating irregular

computational grids.

Haber et al. [61] created a general two-dimensional, graphical

finite element preprocessor, utilizing discrete transfinite mappings for

automatic mesh generation. Thompson, Warsi, and Mastin [62] went

through a comprehensive review of methods of numerically generating

curvilinear coordinate systems with coordinate lines coincident with all

boundary segments. More recently, Cavendish et al. [63] developed an
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approach for automatic three-dimensional finite element mesh

generation. •

It has been observed in Ref. 63 that the most powerful mesh

generators developed to date are referred to interpolators or

interpolation mesh generators. These generators require some initial

form of gross partitioning of the structure into simpler sub-regions. A

sub-region is then modeled by first approximating its bounding edges by

parametric space curves [52], usually low-order polynomials or piecewice

polynomial interpolants. Space curves are then combined to form contour

curves or surfaces (for example, Bezier curve or Bezier surface) and the

curves or surfaces are then combined to define an approximation

region. The entire process is equivalent to the construction of a

vector-valued mapping from a canonical domain (for example, a square or

a cube) onto a sub-region. The mapping may interpolate the sub-region

at a finite [57] number of points. The mapping produces an explicit

mathematical description of the sub-region and can be used to induce a

natural coordinate upon it (usually rectangular).

4.1 Computation of Design Velocit_ Field
and Automatic Regriddin 9

Two methods for design velocity field generation are considered

here. The first uses geometric rules that can be found in most mesh

generators. The second approach uses finite element analysis results,

by treating the boundary perturbation as an external load, which results

in interior domain movement.
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4.1.1 MeshGeneration Method

In order to take the advantage of the existing automatic mesh

generation methods, the design velocity field may be considered as the

difference between the original meshand the meshcorresponding to a

perturbed design. In the finite element modeling process, there are

usually somenodes to be selected as key points in describing the

contour of the model. Interior nodes can be generated automatically by

certain kinds of interpolation; e.g. linear interpolation. Let the

position of someof the key points be related to geometric design

parameters. Then, for each perturbation of a design parameter, there

will be a set of key points perturbed accordingly. The new positions of

key points will lead to a newmesh, through automatic meshgeneration.

Let the position vector of the nodal point of the original meshbe

denoted by Goxi, and the position vector of the newmeshcorresponding

to perturbation of the n-th design parameter be denoted by Gnxi. The

associated design velocity field Vni can then be expressed as

Vni = Gnxi - Goxi (4.1.1)

where xi indicates the xi-coordinate. As was pointed out in Section

2.2.5, the design velocity field for linear elasticity is required to be

at least CO-regular, with an integrable first derivative. It was

observed in Ref.41 that violation on this regularity condition will lead

to errors. Fortunately, this regularity condition can be satisfied by

linear interpolation schemesthat are used in meshgeneration methods.
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The advantage of this method lies in its simplicity and efficiency.

However, there are also somemajor drawbacks that raise greatconcern.

First, grid orthogonality, one of the most important characteristics of

a good meshmay be destroyed during the mesh regenerating process. This

can be seen in Fig. 4.1a, where a rectangular membraneis divided into

smaller rectangles, using the ANSYSmeshgenerator. This rectangular

membraneis then deformed and remeshedto makea fillet shape, as shown

in Fig. 4.1b. Note that there are several distorted rectangles in the

transition region. Kikuchi et al. [64] pointed out that excessive

distortion of finite elements may lead to significant approximation

errors, and consequently, loss of accuracy in shape design sensitivity

analysis. Thus, the meshgeneration method is not suitable for

regridding in shape design sensitivity. Certainly it is possible to

manipulate the meshgenerator to find a reasonable remeshing, but it

will not be a systematic approach. Therefore, another method must be

developed to resolve this problem.

4.1.2 Boundary Displacement Method

The regularity condition on design velocity fields suggests that

displacement shape functions may be used to systematically define the

velocity field in the domain. Moreover, a velocity field that obeys the

governing equation of the structure can be selected. That is, the

perturbation of the boundary can be considered as a displacement at the

boundary. With no additional external forces, but only a given

displacement at the boundary The samefinite element code used for



analysis can be used to find the displacement (domain velocity) field

that, satisfies the required regularity conditions. That is,
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[K]{V}: {f} (4.1.2)

where [K] is the reduced stiffness matrix, {V} is the velocity vector of

the nodes in the varying domain, and {f} is the unknown fictitious

boundary force that produces the perturbation of the boundary. In

segmented form, Eq. 4.1.2 becomes

.]Iv][o: (4.1.3)

Kdb Kdd Vd

where {Vb} is the given perturbation of nodes on the boundary, {Vd} is

the nodal velocity vector in the interior of the domain, and {fb} is the

fictitious boundary force acting on the varying boundary. An equation

for the unknown interior nodal velocity vector can be obtained from Eq.

4.1.3as

[Kdd] {Vd} =-[Kdb]{Vb} (4.1.4)

which defines a linear relation between the boundary and domain design

velocity fields.

The boundary displacement method is applied to the fillet example

considered in Section 4.1.1. It is interesting to observe that this

method has the tendency to preserve grid orthogonality and that grid
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distortion near the transition area that was shown in Fig. 4.1b is

smoothly absorbed by the entire domain in Fig. 4.2. Thus, the boundary

displacement method of automatic regridding does not deteriorate the

accuracy of analysis, provided that the initial mesh is optimized. The

one-step deformation, process shown in Fig. 4.2 is broken downto four

steps, using the updated stiffness matrix of Eq. 4.1.3 at each step, as

shown in Fig. 4.3. The final meshesobtained from the two different

processes are slightly different, with the difference between nodal

locations less than 3 % in this case. The largest difference camefrom

the region around the corner of transition, where curvature change is

the largest. Also, both cases render similar grid distortion patterns.

The orthogona!ity-preserving and nearly path-independent merits of

this method, together with linear dependenceof the design velocity

field on design parameters suggest that structural shape optimization

using this automatic regridding method can be carried out without

intermediate mesh regeneration, for several design iterations. That is,

there maybe no need to solve Eq. 4.1.3 for each updated shape. Due to

its simplicity and generality, this automatic regridding method is quite

general. In applying this method, computational efficiency can be

obtained by suppressing a large numberof degrees-of-freedom, for a

fixed shape contour and specified degrees-of-freedom, for only varying

portions of the boundary, to set up Eq. 4.1.3. For this purpose, a

substructuring technique, or a smaller model, may be used to define the

varying region for design velocity field computation.
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This regridding method can also be utilized as a mesh generator.

The procedure is similar to the fillet example demonstrated. That is,

starting with a regular shape with a regular mesh, a mesh can be

generated using Eq. 4.1.3, while deforming the regular shape to a

desired shape. When this regridding method is used as a mesh generator,

Eq. 4.1.3 need be solved only once. In a region where stress

concentration is predicted, intensity of the mesh may be increased to

obtain a finer mesh. This procedure is similar to the procedure used in

boundary fitted curvilinear coordinate systems, except that the mapping

equations are different. In boundary-fitted coordinate systems, the

mapping equations can be chosen from the family of elliptic equations.

The original shape is first mapped to a regular (rectangular) shape.

The locations of interior nodes are then obtained by solving the

selected elliptic equation, iteratively, with boundary nodal locations

as the boundary conditions. This method is more expensive than the

boundary displacement method, especially when there are several design

velocity fields to be defined. In the boundary displacement method, the

stiffness matrix of Eq. 4.1.3 needs to be decomposed only once for the

first set of design velocity fields., Other sets of design velocity

fields can be obtained by forward and backward substitution.

From the above discussions, it can be seen that treating the

boundary-domain velocity mapping with the system governing equation will

yield efficient automatic regridding, with mesh orthogonality being

preserved.
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4.2 Boundary La_,er

The domain integral form of de6ign sensitivity analysis requires

substantial computation effort, since it is necessary to integrate shape

sensitivity expressions over the varying domain. To achieve

computational efficiency, it is desirable to reduce this integration

work. Braibant and fleury [8] observed that a few design elements are

generally sufficient to fully describe the region that is modified

during optimization, but did not provide the rationale of their

observation.

Choi and Seong [41] presented the idea of a 'boundary layer

coordinate system', with mathematical reasoning and geometric

construction scheme, with a velocity element to define design the

velocity field in the boundary layer. A boundary layer is illustrated

in Fig. 4.4, it is a region specified to cover the varying domain. They

used the boundary layer in two dimensional fillet and interface problems

[41]. Excellent sensitivity results were reported, with significant

saving in computational time. They also suggested use of the strain

energy density distribution as a criteria to systematically quantify the

boundary layer direction, size, and location.

To avoid numerical errors due to grid distortion, a boundary layer

must be large enough. A coarse model of the fillet shown in Fig. 4.5 is

used to visualize grid distortion due to automatic regridding, using the

boundary displacement method, with dashed lines showing the original

grid and solid lines showing the deformed grid. It can be seen in Fig.
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Figure 4.4 A boundary layer

Figure 4.5 Fillet boundary layer
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4.5 that significant grid distortion appears mainly in the middle

portion of the fillet. A possible boundary layer for this case is ,

framed by heavy dashed lines. This suggested boundary layer is similar

to the one used in Ref. 41, where strain energy density is used as the

criteria to determine the boundary layer. Numerical experiments show

that the boundary layer can be very small [41]. However, in order to

avoid excessive grid distortion, it is necessary to either define a

sufficiently large boundary layer, to accommodate large shape change, or

define a small boundary layer and regenerate the grid after a few design

iterations.

4.3 Computational Algorithm for Efficient

Shape Design Sensitivity, Anal_,sis

To evaluate shape design sensitivity expressions, the finite

element method is used. The finite element code ANSYS is used to

perform structural stress analysis and an interface program provided by

the Swanson Analysis Systems, Inc. is applied to retrieve analysis

results from ANSYS data files. There are two approaches to retrieving

data from ANSYS. The first is to acquire and store all data in the

beginning of sensitivity analysis. The second approach is to retrieve

only necessary data at one time for local computation. The first

approach requires much larger initial data storage than the second.

However, it has been experienced that when an interface program is used

for data transfer, it will increase the INPUT/OUTPUT time and detract

from computational efficiency, especially in a super computer.
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Therefore, the preferable approach is to store all necessary information

at one time, rather than to retrieve local data so often.

A computational algorithm is usually written in modular form, for

clarity and simplicity. However,modular the form increases

INPUT/OUTPUTtime. To achieve computational efficiency, the numberof

modules in a program should be kept to a minimum. The major part of

shape design sensitivity computational effort is used in computing and

integrating derivatives of displacements, adjoint displacements, and

velocity fields. The computational procedure must be carried out in a

systematic manner, to avoid repetition.

The general procedure for shape design sensitivity analysis is

described in the following steps:

STEP 1

Define a finite element model of the physical problem, and select

shape design parameters, in the manner discussed in Chapter 3.

STEP 2

Carry out finite element stress analysis.

STEP 3

Construct a design velocity field, using either mesh-generation or

boundary displacement methods.

STEP 4

Compute adjoint load sets for active constraints.



60

STEP 5

Carry out adjoint analysis.

STEP 6

Evaluate shape design sensitivity, based on the algorithm that

fol lows.

4.4 Shape Design Sensitivity

Computational Algorithm

The displacement sensitivity expression of Eq. 2.2.31 is used as an

example, to demonstrate the proposed computational algorithm. The

algorithm starts with data management. Information on thedisplacement

field z, adjoint displacement field _, design velocity field V, and

constraint definition indices are stored in a data file. After the data

file is established, proceed to compute design sensitivity in three

levels.

Level 1. Domain integration.

In this level, nodal locations and element connectivity and

material properties are retrieved from ANSYS data files, following

the element numbering sequence. Design sensitivity analysis is then

carried out, element by element.

Level 2. Element integration (Gaussian point integration).

For each element, shape design sensitivity expressions are

evaluated using Gaussian integration. That is, the shape design
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sensitivity value for each element is represented by the summation

of the value of all Gaussian points (27 in this case). To _btain

shape design sensitivity, it is necessary to evaluate z_, the first

derivatives of the displacement field. In the finite element

z_ is obtained by multiplying the first derivatives of shapemethod,

functions with the displacement vector. Strain ¢I_(z) and

stress _J(z) tensors are obtained from z_.

The algorithm then movesinto the innermost level, where

sensitivity expressions for each constraint (the adjoint variable)

and each design parameter are evaluated.

Level 3. Adjoint variable and design parameter.

Sensitivity evaluation requires the values of the first

derivatives of the adjoint displacement field _! and design velocity
J

field V_. These terms can be obtained in a similar manner as that

for z_. The adjoint strain ciJ(_) and stress ij(_) tensors are

also constructed and stored.

Displacement sensitivity at each Gaussian point, for each

constraint and design parameter, is then evaluated. Element

sensitivity is obtained by summingthe sensitivity value at each

Gaussian point. The algorithm then movesto the next element, to

repeat the computation of levels 2 and 3, until all elements are

exhausted. DomainSensitivity is obtained by summingelement

sensitivities.
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The surface traction variational effect must be evaluated along the

traction boundary. This'can be accomplished by boundary integration.

The procedure is exactly the sameas the procedure from level 1, 2, and

3, except that Gaussian points are now located at the traction surface.
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CHAPTER5

SHAPEDESIGNSENSITIVITYANALYSIS

To demonstrate the feasibility of shape design sensitivity analysis

using geometric modeling and automatic regridding, three different types

of 3-D solid structures are tested numerically and discussed in this

chapter. The first example tested is an engine bearing cap, a

mechanical part that is used to secure engine crank shaft to the engine

body. The cap is required not to deform more than a tolerable clearance

to provide adequate lubrication. This problem was investigated first by

Imam[6], and later by Yang and Botkin [39].

The second example is a three dimensional arch dam, that was

optimized first by Wassermann[7]. The main concern of the 3-D arch dam

lies in prediction of the effect of variation in self-weight and water

pressure due to shape change. Another concern is design

parametrization. Since the arch damforms a three dimensional closed

surface (or an envelope), it is necessary to parametrize two surfaces

(upstream and downstreamsides).

The third example tested is the total hip joint reconstruction [65]

in orthopedic surgery. Total hip arthroplasty has been performed by

surgeons for over one hundred fifty years. As the medical and

biological environments are improving, problems of prothesis service

life span is now mostly closely to mechanical performances. In this
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problem, prothesis strength and geometry, cement strength and thickness,

and bone strength must be dealt with simultaneously.

5.1 Engine Bearin 9 Cap

Shape design sensitivity analysis is carried out for the engine

bearing cap of Fig. 5.1 [6]. Since it is intended to demonstrate

feasibility of the proposed method of shape design sensitivity analysis,

the structure and loading condition of the cap will be reasonably

simplified and yet general enough to demonstrate feasibility of the

method. The cap is modeled as a three dimensional linear elasticity

problem, in which the cap is subjected to 5000 psi uniform oil film

pressure transmitted from the engine shaft bearing and bolt clamping

force of 14,775 lb. on the top of cap. The cap structure is assumed to

be symmetric with respect to the center line, so that only half of the

finite element model is used for analysis and sensitivity analysis. The

cap finite element model consists of 82 20-node isoparametric solid

elements (ANSYS STIF95, Fig. 5.2), with 768 nodes and 2304 degrees-of-

freedom. The model is shown in Fig. 5.3. For a ductile steel cap,

Young's modulus is 30. Mpsi and Poison's ratio is 0.3.

The boundary conditions used in Ref. 6 are adopted here. It was

confirmed by finite element analyses that the flat bottom surfaces of a

cap remain in firm contact with the journal, even under the highest oil

film pressure load. Therefore fixed boundary conditions for nodes on

the flat bottom surfaces of the cap are justified. All other nodes are

free to move in any direction, except nodes on the plane of symmetry are
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constrained in the Xl-direction , due to the structural symmetry

assumption.

The top of bearing cap is parameterized by a Bezier surface with 4

control points, as shownin Fig. 5.4. The Bezier surface is assumedto

have curvature in the Xl-direction only. The x2-coordinates of these

control points are selected as the first four design parameters. The

distance of the center line of clamping bolt from the center line of cap

is chosen as the fifth design parameter, while the distance of the cap

edge from the center line of cap is defined as the sixth design

parameter.

The boundary displacement method is used to generate six sets of

design velocity fields, corresponding to six design parameters. For the

first four sets of design velocity fields, the boundary velocities are

determined by perturbing the x2-coordinate of each control point a unit

magnitude, using Eq. 3.2.17. The associated domain velocity fields are

obtained by solving Eq. 4.1.3.

In order to achieve computational efficiency, the boundary layer

idea is used to generate design velocity fields corresponding to design

parameter 5 and 6. For design parameter 5, the boundary layer consists

of 25 (out of 82) elements, as shown in Fig. 5.5, while only 15 (out of

82) elements along the cap edgeare used to define the boundary layer

for design parameter 6, as shownin Fig. 5.1.6.
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Figure 5.5 Boundary layer for design parameter 5

Figure 5.6 Boundary layer for design parameter 6
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5.1.1 Stress Design Sensitivity Analysis

Element averaged von-Mises stress [66] _s used as the stress

constraint for this problem. Since no load variation is involved, Eq.

2.2.42 reduces to

°

4' : fir Z [(_iJ(z)C v},iTV ) + vzIT
R i ,j:l J Vj )

- (_iJ(z)ciJ(_,) (div V)] dR

3 3 (vzkT
-fff Y [ Z g-'(z) Cijk_ V£)]mp dR

R i,j=l k,_=l o13

+ fffRg(div V)mp dR- 4 ° fffR(div V)mp dR
(5.1.1)

Due to symmetry of the structure, only 53 (out of 82) elements need to

be tested to verify accuracy of von-Mises stress sensitivity analysis.

5.1.2 Results and Discussion

Shape design sensitivity analysis is performed for each parameter

and is checked with a 1% perturbation. Results of shape design

sensitivity are given in Tables 5.1-5.6.

In each table, the first column indicates the element number, the

second column is the element averaged von-Mises stress 41 for the

initial design, the third column is the von-Mises stress 42 for the

perturbed design, the fourth column is the finite difference A4 =

42 - 41 and the fifth column is the predicted stress change 4' The
D
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sixth column shows the comparison between finite difference a¢ and

p_edicted change ¢', with 100 as complete agreement• That is, any

measure lower than 100 means under predicting and any measure higher

than 100 means over predicting• To analyze sensitivity accuracy

systematically, a grading system is adopted• The grade system is listed

in Table 5.7. The grade system is used to examine the general

performance of the design sensitivity analysis results of Tables 5.1-

5.6. A summary of this analysis is presented in Table 5.8.

It is important to note that accuracy of sensitivity analysis

depends on the accuracy of finite element analysis• On the one hand,

the sensitivity _' may deviate from A_ if the design perturbation 6b is

so large that nonlinearity becomes significant• On the other

hand, aCmay be too small and results in errors because of losing

significant digits if ab is too small• Furthermore, in the ANSYS data

entry stage, only a limited number of digits can be used, this will

cause minor numerical errors in computing the finite difference

result a¢. Numerical experiments show that sensitivity analysis

generally agrees well when At is between 1% to 5% of ¢1 Therefore

this accuracy comparison is used to measure global performance of the

shape design sensitivity analysis method presented.

The last row of Table 5.8 shows the overall averaged percentage of

each grade• On average, 87•33% (46 out of 53) of the predictions ¢' are

between 95% to 105% agreement with the analysis difference a¢ and 94.61%

(50 out of 53) of the predictions are between 90% to 110% agreement

with a¢. This agreement is considered satisfactory while the
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sensitivity obtained from the material derivative is comparedwith that

obtained from forward finite difference. Agreementcan be further

improvedby using the central finite difference [43]. Choi and Twu [67]

observed that the sensitivity obtained from central finite difference

converges to that obtained from material derivative.

Sensitivity analysis results show that the von-Mises stress

criteria is less sensitive with respect to design parameters 1, 2, and

3, since the varying region due to perturbations of these parameters are

relatively remote from the stress concentration area surrounding the

clamping bolt hole. It is observed that all poor or failed predictions

correspond to very small A¢. This includes element 75 in Table 5.2,

elements 69 and 80 in Table 5.3, element 62 in Table 5.4, and elements

33, 47, and 48 in Table 5.5.

5.2 Doubly-Curvature Arch Dam

A double-curvature arch dam similar to that studied by Wassermann

[7], is treated here using higher order finite element approximation and

continuum shape design sensitivity analysis discussed in Chapter 2. A

picture of an actual arch dam is shown in Fig. 5.7 [68]. Conven-

tionally, an arch dam design is defined by its contour plan and crown

cross section, as shown in Fig. 5.8 [68].

substantial literature deals with shape optimization of gravity

dams [2,5,16,30,38,69]. For a three dimensional arch dam, Rajah [70]

optimized dam shape using membrane shell theory. Mohr [71] used the

same approach. Sharp [72] used thin shell theory to optimize a double
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. Figure 5.8 Contour plan and crown cross section of an arch dam
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curvature arch dam, but experienced difficulties in completely

_atisfying tension limits within the structure. Wassermann[7] used 8

node solid finite elements to optimize a double-curvature arch dam, with

position and tangent vectors as design variables, and solved the

optimization problem by sequential linear programming. Foundation

interaction was considered in Ref. 7. Wang,Sun, and Gallager [9]

presented shape design sensitivity analysis and optimal design, based on

finite element method, with the position of a limited numberof master

nodes that characterize the surfaces of a set of isoparametric finite

element as design parameters.

To simplify the study, without loss of generality, the following

assumptions are madein this problem:

1. The structure and loading conditions are assumedto be symmetric

with respect to the crown cross section. Thus, only half the span

of the arch dam is analyzed.

2. Dam-foundation interaction is not considered. That is, the

foundation is assumedto be rigid,

3. Temperature effects are not considered.

4. Gravel concrete is assumedto be homogeneousand behave

elastically.

The physical properties involved are gravity acceleration (10.

m/sec/sec), water weight density (10. KN/m3), gravel concrete weight

(25. KN/m3), the concrete elastic modulus(21. GPa), and concrete

Poinson's ratio (0.2).
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Bezier surfaces are used to parametrize two surfaces of an arch dam

(upstream and downstreamside). Each side is defined by 16 control

points. In this study, the initial shape of an arch dam is assumedto

be a gravity dam. A parametric representation of this gravity dam is

shown in Fig. 5.9. A series of shape design sensitivity analyses is

carried out for this gravity dam. In the optimization phase to be

presented in Chapter 6, shapedesign sensitivity accuracy is tested for

a curved arch dam.

The x2-coordinates of 32 control points are selected as design

parameters. The damfinite element model is uniformly divided by 6x6

meshes in the Xl-X3 plane, while there is only one layer in the x2

direction. It contains a total of 36 20-node isoparametric solid

elements and 315 nodes with 726 active degrees-of-freedom (Fig. 5.10).

Due to simplicity of the finite element model and design parameters

selected, it is unnecessary to apply the boundary displacement method to

generate domain velocity fields. The entire structure is a boundary

layer, since there is only one layer of elements defined in the x2-

direction. The global control nature of Bezier surfaces force all

elements to movein response to any control point perturbation.

Boundary velocity fields can be determined by surface perturbations,

while domain velocity fields can be obtained by using displacement shape

functions.

In the ANSYSfinite element code, the linear water pressure profile

is treated as a rampedprofile (see Figs. 5.11 and 5.12). Also,

continuous self weight of the concrete dam is treated as discretized
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Figure 5.10 Finite element model of dam
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nodal forces. Numerical tests involving these two approximations are

discussed in the next two sections.
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5.2.1 Material Derivative of Load Linear Form

of Body Force

In Eq. 2.2.20, the material derivative of the load linear form for

body force is given by the first and second terms on the right. For

self-weight body force, these two terms reduce to just one term. That

is, if fi = rgi, where r is mass density, gi is the i-th component of

the gravitational acceleration vector. Since both r and g are assumed

constant, the first term on the right of Eq. 2.2.20 vanishes. Thus, the

only term left is

3

£'(_) : Ill Z fi_i( div v) dR (5.2.1)
i:l

Numerical evaluation of Eq. 5.2.1 is simple, since f is constant.

Self-weight must be converted to equivalent nodal forces in finite

element analysis. Usually this is done by forming a mass matrix to

determine equivalent nodal forces. In the ANSYS finite element code, a

simple lumped mass matrix is adopted, instead of a consistent mass

matrix. The lumped mass matrix is used to construct the nodal gravity

force. The lumped mass matrix derived from certain shape functions

[73,74,75] was originally introduced for eigenvalue analysis. Clough

[76] proved that this type of mass lumping method will lead to solution

convergence. In the ANSYS finite element code, lumped masser for a

three dimensional elastic solid are constructed in such a manner that
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all corner nodes assume1/40 of the total mass of the element, while

each edge node assumes1/15 of the total mass [77]. In discretized

form, the nodal gravity force is

Fi = rgi Vol/Cn --rgi fff dR/C nn
(5.2.2)

where Vol and Cn denote the volume of element Re and the mass

distribution coefficient, respectively.

The load linear form variation, due to body force variation, can be

written in discrete form as

N 3 i--i N 3 r#i--i Fi--i
[ Z C Z F Zn) ]' = Z Z L nZn + nZn J (5.2.3)
n=l i=1 n=l i=1

where Fi denotes the i-th component of the nodal force of node n, --i is
n Zn

the i-th component of virtual displacement of node n, and N is the

number of total nodes in each element. Using the fact that z = 0 , the

second term on right side of Eq. 5.2.3 vanishes. When evaluated

at z = _, the right side Eq. 5.2.3 becomes (see Eqs. 2.2.28 and 2.2.41)

N 3
i i

_'(_) = Z Z _n}'n (5.2.4)
n=l i=1

The variation of nodal body force is linearly proportional to the volume

change of an element. That is, from Eq. 5.2.2,

FIn : rg i Ill (div V) dR/C n (5.2.5)

e



Therefore, the material derivative of the load linear form for self-

weight can be evaluated either in continuum form or in discrete form.

Numerical experiments show that results obtained from both approaches

are very close to each other (within 4% error). This observation

confirms the validity of the mass lumping method.
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5.2.2 Material Derivative of Load Linear Form

of Surface Traction

For surface traction due to hydrostatic water pressure, the

material derivative of the load linear form can be derived in the

following manner. Let

Ti : p(x) ni(x) (5.2.6)

where Ti is the i-th component of traction force, ni(x) is the external

unit normal vector on the boundary, and p(x) is the pressure

distribution. Using Eq. 2.2.20, the material derivative of the load

linear form, due to water pressure, can be obtained as

9.'(_) = II [(vpTv)(nTx) * p(nTx)( div V) - pxT(DvTn)] dr
r

(5.2.7)

A numerical experiment is carried out to compare sensitivity

computations based on linear and ramped water pressure. It is observed

that sensitivity results obtained for two pressure loadings agree with

each other to within 3%. This observation confirms that the ramped

water pressure assumption is valid. The design sensitivity expression



for pointwise principal stress is obtained by substituting Eqs. 5.2.1

and 5.2.7 into Eq. 2.2.45.
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5.2.3 Results and Discussion

Shapedesign sensitivity computation of the principal stress at

Gaussian points on both upstream and downstream faces is carried out in

this section. Derivation of three dimensional principal stress can be

found in Ref. 66. Since the main purpose here is to demonstrate

feasibility of method proposed, only the first principal stress at one

Gaussian point on the upstream surface of each finite element is

investigated and reported. Results are given in Tables 5.9-5.16. Eight

out of 32 design parameters are perturbed by one meter each. These are

parameter 1, 6, 8, and 13 on the downstreamsurface and 17, 23, 29, and

32 on the upstream surface defined in Fig. 5.11.

The grading schemeof Table 5.7 is also used here to assist in

accuracy analysis. Results are listed in Table 5.17. The last row of

Table 5.17 showsthat, over eight cases studied, 90.63% (33 out of 36)

of predictions ¢' are within 5%of A¢, and 94.1% (34 out of 36) are

within 10%of A¢. The prediction failure rate is slightly higher than

that for the engine bearing cap. Most of the predictions graded below c

are associated with small a¢. This includes elements 13 and 14 in Table

5.9, elements 25 and 27 in Table 5.11, elements 29, 32, and 34 in Table

5.12, elements 12 and 22 in Table 5.14, and element 36 in Table 5.16.

finite difference a¢ for element 27 in Table 5.11 is 3%of ¢1, whichThe

is not small. This peculiar case seemsto occur in a region of stress
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transition. It is possible that the finite element model is not fine

enough to reflect this stress state. The body force and water pressure

approximations mayplay certain roles in this inaccuracy problem.

However, the overall performance of the shape design sensitivity

analysis method is consistently good. It is also noteworthy to see the

accuracy achieved in this case, even when approximation methods such as

lumpedmassand rampedpressure are used. To achieve better

comparisons, the central difference schemecan be applied to compute

finite differences.

5.3 Total Hip Joint Reconstruction

In a recent publication, Vichnin and Batterman [78] pointed out

that "the number of total number of hip replacements implanted in humans

has reached over 100,000 per year, which demonstrates the need for

optimum design of these devices to maximize their service life, and

design of prothesis implants can be greatly enhanced by applying

sophisticated structural engineering techniques to the pertinent

biomechanics problems." Conventry [79] reviewed and presented a

historic perspective and the present status of total hip arthroplasty.

His study revealed developments in the state-of-the-art of orthopedic

surgery. The earliest surgery was done by Barton [80] in 1826_ In the

past are hundred fifty years, hip surgery has relied on human

imagination and trial-and-error, with most cases failind. In accounting

for difficulties regarding human joint replacement, Smyth [81] said it

best in his statement; "the complete solution to the problem of
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arthroplasty will be found only when we can provide our patients with

new hips either madeof, or be able to unite with living bone."

However, before the complete solution is reached, the structural

behavior of hip joints should be fully understood. A schematic figure

of a total hip joint reconstruction is given in Fig. 5.13.

Finite element stress analysis was first introduced in orthopedic

literature by Brekelmans et al. in 1972 [82]. Since then, manyworks

have contributed to analyzing bone and implant structures, using finite

element analysis. These works lead to deeper physical insight to

structural performance of humanskeletal parts and implant interactions.

Huiskes and Chao [83] conducted a survey of applications of finite

element analysis in orthopedic biomechanics. Gallager et al. [84]

contributed a textbook, Finite Elements In Biomechanics.

Other than biological factors, the complexity of total hip joint

reconstruction is aggravated by bone/cement/implant interactions. The

problem of total hip design optimization is not limited in implant

strength and geometry, or to cement properties and thickness. The

ultimate goal is to 'reconstruct' a living hip. The structural

performance (stress state) of a hip joint and bone must be reinstated as

closely as possible to the real hip joint, in order to resume normal

life duties. In attempting to construct a hip joint with an implant and

cement, it is very important to establish a pertinent design criteria.

Crowningshield et al. [85] observed that clinical experience with

total hip reconstruction has been characterized by a variety of

mechanical problems, dislocation, wear, component fracture, and
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component loosening [85]. The long-term success of total hip

arthroplasty is presently more limited by mechanical failures than by

biological problems. Most of the failure modescited can be related to

cement thickness and strength (Young's modulus).

Considering cement as the media that is interfaced between the

metal implant and bone, from the point view of the material interface

problem investigated by Sih et al. [86], the cementwill perform much

better if its properties can be designed as a compromisebetween implant

and bone. Unfortunately, current technology can only produce cement

with Young's modulus almost ten times lower than that of bone, and one

hundred times lower than that of a metal implant. Facing this reality,

Kwaket al. [87] investigated the effect of cement thickness on the

stress state of the cement and metal implant by a two dimensional finite

element analysis. Crowningshield et al. [85] studied the effect of

femoral stem cross-sectional geometry on cement stresses in total hip

reconstruction in a three dimensional finite element analysis.

Crowningshield et al. [88] studied the function of an implant collar,

use of Titanium in femoral protheses, and design analysis of bone

cements [89].

The current limitation on the cement material strength suggests

that it might be a better strategy to design an implant with material

properties closer to a real bone, in order to create better interface

stress condition. However, without a systematic design sensitivity

analysis, design optimization of total hip joint reconstruction is far

from reality. The first systematic analysis of cement property design
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sensitivity analysis for implant design, based on a strain energy

density failure criteria, in Refs. 90 and 91 was presented by Yang

et al. [92].

The major engineering problems relating to total hip joint optimal

design maybe summarizedas follows:

1. Design failure criteria for implant, cement, and bone: For the

implant, possible failure criteria can be von-Mises equivalent

stress octahedral shearing stress, as was pointed out in Ref. 93.

Since most stems are built by ductile material, failure will most

likely occur due to shear stresses. However, for fatigue failure,

principal stress is considered as a failure criteria. In this work,

principal stress will be considered as the failure criteria for the

stem. For cement, a relatively brittle material, failure is most

likely related to dilatation stresses; i.e., principal stresses.

However, for cement cracks due to manufacturing defects or

implanting errors, strain energy density [91] is considered as the

fracture criteria. Therefore, strain energy density is considered

here as the failure criteria for cement. Sih et al. [90] pointed

out that in most cases of loosening, the cement-bone interface was

involved more often than the cement-implant interface. Failure was

attributed mostly to the gross differences in modulus of the bone

and cement, over a very short distance, resulting in sharp stress

gradients. This is generally thought to be the cause of bone

resorption and consequent loosening. For the bone, Lindahl and

Lindgren [94,95] studied the tensile and compressive rupture
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strength of human cortical bone. Vichnin and Batterman [78] used

the failure criteria for anisotropic material establ'ished by Tsai

and Wu [96] in stress analysis and failure prediction in the

proximal femur, before and after total hip replacement. The

principal stress is considered as the failure criteria for bone in

this work.

Geometric modeling: Construction of a finite element model of the

proximal femur is an instrumental but very expensive step.

Crowningshield and Wilson [89] used cat scan images to generate a

finite element model of a cadaver femur with an implanted trial HD-2

prothesis. It is necessary to generate such a geometric model, case

by case, to study individual hip joint performance. The geometry of

the prothesis and the cement thickness are design parameters to be

considered.

Reinstate stress state of original hip joint in the totally

reconstructed hip joint: Once the real hip joint is injured, it is

almost impossible to determine the original stress state in the

bone. However, an artificial stress state can be obtained from the

finite element model, with loading conditions determined through

biomechanical study [97,98]. In the optimization process, this

stress state may be imposed as a side constraint, to simulate the

structural behavior of real bone. In addition to this complicated

process, different loadings must also be considered. Without this

consideration, the reconstructed hip joint may be too stiff in one

region, but too soft in an other region [65]. Failure will occur



88

most likely in those regions of abrupt discontinuity of flexural

rigidity.

Fromthis study, it is clear that design optimization for total hip

joint reconstruction can be achieved only through a systematic

approach. Due to current limitations in cement properties, a true

optimal design may not exist. However, a near-optimum can still be

obtained, through geometry arrangement of the implant and cement

thickness.

5.3.1 ShapeDesign Sensitivity Analysis

To tackle such a complicated problem, a feasibility study is

conducted here, based on the shape design sensitivity analysis method

discussed in Chapter 2 and related numerical methods, to investigate the

geometric influence of implant and cement thickness on stress

distribution in bone, cement, and stem. The principal stress is used as

a design failure criteria for the metal stem and bone, while strain

energy density is considered as a design failure criteria for cement.

The material properties of all parts are listed below:

Material Youn_'s modulus Poinson ratio

Stem 207. GPa 0.3

Cement 2.07 GPa 0.23

CompactBone 14.0 GPa 0.3
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Several assumptions were madeto simplify this work, without

sacrificing much information. A prototype femur model is simplified

from the cadaver femur model of Ref. 89 as the piecewise linear conical

solid shownin Fig. 5.14. For simplicity, structural and loading

symmetry are assumed. Therefore, only half of the model is

constructed. The finite element model consists of 16 elements for the

metal stem (Fig. 5.15), 28 elements for the cement (Fig. 5.16), and 36

elements for the bone (Fig. 5.17). The model has 525 nodes and 1335

active degrees-of-freedom. The model is assumedto be fixed in the

distal end of the bone. Referring to the studies of Refs. 85 and 87, a

4000 N vertical force is applied at the tip of the stem. This force is

roughly equivalent to the gate force generated by a 70 Kg person.

Sixteen design parameters are selected. The first eight parameters

are the radius of the stem at different locations, as shown in Fig.

5.18, while the last eight parameters are the radius of the bone-cement

interface. Cement thickness at different locations is determined by

subtracting the radius of stem from the radius of the bone-cement

interface. Each design parameter is perturbed by 5%, to obtain the

associated design velocity field. To allow a local shape change,

perturbation of each design parameter will influence only the

neighboring two layers of elements. For example, perturbation of r3

will lead to a shape change in only 12 surrounding elements and

perturbation of rll will lead to shape change in 16 elements. There are

four groups of stress functionals on which shape design sensitivity

analysis is carried out. For simplicity, shape design sensitivity
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(a) Hidden lines removed (b) With hidden lines

Figure 5.14 Finite element model of hip joint reconstruction
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(a) Hidden lines removed (b) With hidden lines

Figure 5.15 Finite element model of stem
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(a) Hidden lines removed (b) With hidden lines

Figure 5.16 Finite element model of cement
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(a) Hidden lines removed (b) With hidden lines

Figure 5.17 Finite element model of bone
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results are reported for perturbation of three (out of 16) design

parameters in each group. Results a_e presented in Tables 5.18-5.29.

The central finite difference method is applied to evaluate accuracy of

the constraint gradient.

Group I:

Group 2:

Group 3:

Group 4:

Stem principal stress at stem-cement interface (Tables 5.18-

5.20).

Cement strain energy density at stem-cement interface (Tables

5.21-5.23).

Cement strain energy density at bone-cement interface (Tables

5.24-5.26).

Bone principal stress at bone-cement interface (Tables 5.27-

5.29).

5.3.2 Results and Discussion

Equation 2.2.45 is used to evaluate pointwise shape design

sensitivity of principal stress and strain energy density. Since

geometry of this prototype model is different from any real femoral

model, the stress state obtained in this analysis may be used only for

comparison purposes. The grading system used in previous sections for

accuracy of sensitivity analysis is used here. Results are shown in

Table 5.30.

Remarkable agreement is achieved between constraint gradients

obtained from the material derivative and central finite difference.

Less accurate results only appear in Table 5.26. In this particular
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case, different perturbations of design are tested, but all lead to

similar results. This pitfall maybe attributed to the locally

nonlinear nature of this interface problem and the small sensitivity

values reported in Table 5.3.9.
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1 9829.4564 9828.5147 -0.9417 -1.0018 106.38
2 9631.2028 9628.0146 -3.1882 -3.3138 103.94
4 10620.3320 10608.8240 -11.5080 -11.8711 103.16

5 11444.4800 11434.0660 -10.4140 -10.7471 103.20
7 13584.5710 13571.7170 -12.8540 -13.2538 103.11
8 13641.4950 13628.8460 -12.6490 -13.0425 103.11

10 17933.5910 17925.6160 -7.9750 -8.2273 103.16

11 18498.6300 18490.9490 -7.6810 -7.9352 103.31
13 21202.2630 21201.5970 -0.6660 -0.7012 105.29

14 34270.5140 34269.2430 -1.2710 -1.3343 104.98
16 8367.4820 8371.7067 4.2247 4.3239 102.35
18 9686.1116 9676.9415 -9.1701 -9.4531 103.09
20 12670.2480 12662.7390 -7.5090 -7.7352 103.01

22 16248.4050 16245.1790 -3.2260 -3.3429 103.62

24 30901.3690 30904.1690 2.8000 2.8219 100.78
26 7311.4083 7318.5419 7.1336 7.3411 102.91
27 6857.7422 6866.'6746 8.9324 9.2034 103.03

29 7917.4211 7914.0475 -3.3736 -3.4779 103.09
30 7234.2502 7231.6073 -2.6429 -2.7216 102.98
32 9528.8157 9523.9627 -4.8530 -4.9934 102.89

33 8521.5076 8516.3478 -5.1598 -5.3093 102.90
35 13328.4650 13325.3210 -3.1440 -3.2598 103.68
36 12091.2310 12086.3290 -4.9020 -5.1166 104.38
38 24661.4990 24667.9040 6.4050 6.5416 102.13

39 44231.0680 44236.8710 5.8030 5.7784 99.58
41 7349.5330 7356.6628 7.1298 7.3567 103.18
42 6920.5279 6929.3109 8.7830 9.0593 103.15
44 5998.6512 6000.6752 2.0240 2.0604 101.80

45 5762.5105 5763.5140 1.0035 1.0099 100.64
47 7016.8980 7013.2086 -3.6894 -3.8037 103.10
48 6822.9614 6818.7951 -4.1663 -4.2942 103.07

50 9706.9951 9701.8648 -5.1303 -5.2626 102.58
51 9639.7495 9634.9357 -4.8138 -4.9829 103.51
53 13634.1000 13643.2470 9.1470 9.4251 103.04

54 19874.8650 19883.4050 8.5400 8.7644 102.63

56 6080.3933 6065.7735 -14.6198 -15.0314 102.82
57 6121.4120 6106.7258 -14.6862 -15.1005 102.82
59 5832.8322 5813.2385 -19.5937 -19.9210 101.67
60 6266.5615 6248.8605 -17.7010 -18.0088 101.74

62 7041.7283 7052.1501 10.4218 10.7068 102.73
63 8230.6127 8244.8428 14.2301 14.6050 102.63

65 4816.1908 4797.6675 -18.5233 -18.9947 102.55
66 4787.5653 4771.0819 -16.4834 -16.9027 102.54
68 3537.2024 3509.5537 -27.6487 -28.6517 103.63

69 3692.9881 3667.0216 -25.9665 -26.8463 103.39
71 6541.8233 6536.2666 -5.5567 -5.3987 97.16
72 6643.3182 6641.4923 -1.8259 -1.5290 83.74

74 3872.7605 3873.9019 1.1414 1.1218 98.28
75 3820.6962 3823.0448 2.3486 2.3588 100.43

77 3918.9608 3936.1207 17.1599 16.7092 97.37
78 3932.8001 3946.4754 13.6753 13.2409 96.82
80 6240.3854 6161.1448 -79.2406 -79.4547 100.27

81 6158.4620 6072.4872 -85.9748 -86.2675 100.34
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Table 5.2 SDSAresult of cap (6b2 : 0.01 b2)

Element _1(b) _2(b+_b) a_ _' _'/A_ %
No.

1 9829.4561 9827.5820 -1.8742 -1.9203 102.46

2 9631.2031 9626.9561 -4.2469 -4.3210 101.74
4 10620.3320 10607.5225 -12.8100 -12.9861 101.37

5 11444.4805 11432.5967 -11.8830 -12.0486 101.39
7 13584.5713 13569.7412 -14.8300 -15.0273 101.33

8 13641.4951 13626.8564 -14.6390 -14.8348 101.34
10 17933.5918 17922.7813 -10.8100 -10.9519 101.31

11 18498.6309 18488.5039 -10.1260 -10.2604 101.33
13 21202.2637 21200.1563 -2.1070 -2.1312 101.15

14 34270.5156 34267.6211 -2.8910 -2.9270 101.25
16 8367.4824 8371.6221 4.1401 4.1692 100.70

18 9686.1113 9676.4238 -9.6876 -9.8197 101.36
20 12670.2480 12661.2373 -9.0110 -9.1269 101.29

22 16248.4053 16240.7373 -7.6680 -7.7643 101.26
24 30901.3691 30899.0566 -2.3130 -2.3259 100.56
26 7311.4082 7319.2188 7.8103 7.9015 101.17

27 6857.7422 6867.4507 9.7087 9.8343 101.29
29 7917.4209 7914.5054 -2.9156 -2.9584 101.47
30 7234.2500 7232.3486 -1.9015 -1.9270 101.34

32 9528.8154 9523.8018 -5.0142 -5.0787 101.29
33 8521.5078 8517.0449 -4.4629 -4.5210 101.30

35 13328.4648 13320.3066 -8.1580 -8.2630 101.29
36 12091.2314 12081.9531 -9.2780 -9.4238 101.57

38 24661.4980 24662.7266 1.2270 1.2593 102.63
39 44231.0664 44227.4102 -3.6570 -3.7067 101.36

41 7349.5332 7357.8228 8.2897 8.4018 101.35
42 6920.5278 6930.4922 9.9641 10.0993 101.36
44 5998.6514 6001.3735 2.7225 2.7301 100.28

45 5762.5107 5764.3105 1.7999 1.7957 99.77
47 7016.8979 7013.7998 -3.0984 -3.1479 101.60

48 6822.9614 6819.5337 -3.4275 -3.4809 101.56

50 9706.9951 9698.6182 -8.3767 -8.4854 101.30
51 9639.7490 9632.9951 -6.7542 -6.8676 101.68

53 13634.0996 13642.1826 8.0830 8.1758 101.15
54 19874.8652 19886.6172 11.7530 11.8758 101.04

56 6080.3931 6067.9648 -12.4286 -12.5846 101.25
57 6121.4121 6109.1602 -12.2519 -12.4059 101.26

59 5832.8320 5810.8921 -21.9401 -22.1048 100.75
60 6266.5615 6248.0376 -18.5240 -18.6539 100.70

62 7041.7285 7037.5947 -4.1334 -4.1586 100.61
63 8230.6123 8226.6572 -3.9552 -3.9200 99.11

65 4816.1909 4804.4438 -11.7468 -11.8391 100.79
66 4787.5654 4777.2231 -10.3422 -10.4232 100.78

68 3537.2024 3529.2163 -7.9860 -8.2503 103.31
69 3692.9880 3684.0610 -8.9271 -9.1526 102.53

71 6541.8232 6511.0430 -30.7802 -30.7081 99.77

72 6643.3184 6605.9126 -37.4054 -37.3561 99.87
74 3872.7605 3871.6660 -1.0945 -1.1390 104.07

75 3820.6963 3820.5486 -0.1476 -0.1835 124.35

77 3918.9607 3913.3545 -5.6062 -5.8643 104.60
78 3932.8000 3926.5962 -6.2040 -6.4450 103.88

80 6240.3853 6205.8198 -34.5655 -34.5274 99.89
81 6158.4619 6123.2358 -35.2264 -35.1633 99.82
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Table 5.3 SDSAresult of cap Cab3 = 0.01 b3)

Element _#I(b) ¢2(b+ ab) a¢ ¢' ¢'/A¢ %
No.

1 9829.4561 9825.5273 -3.9292 -4.0076 i02.00
2 9631.2031 9624.5986 -6.6039 -6.7090 101.59
4 10620.3320 10604.3408 -15.9910 -16.1877 101.23

5 11444.4805 11428.9648 -15.5150 -15.7111 101.26
7 13584.5713 13564.7061 -19.8650 -20.1043 101.20
8 13641.4951 13621.5488 -19.9460 -20.1870 101.21

10 17933.5918 17914.9961 -18.5950 -18.8183 101.20
11 18498.6309 18482.3672 -16.2620 -16.4566 101.20
13 21202.2637 21197.3320 -4.9310 -4.9862 101.12

14 34270.5156 34264.9531 -5.5610 -5.6229 101.11
16 8367.4824 8371.5762 4.0944 4.1080 100.33
18 9686.1113 9675.1709 -10.9408 -11.0693 101.17

20 12670.2480 12657.9805 -12.2680 -12.4082 101.14
22 16248.4053 16231.7275 -16.6770 -16.8699 101.16

24 30901.3691 30891.0859 -10.2840 -10.3932 101.06

26 7311.4082 7320.8901 9.4816 9.5783 101.02
27 6857.7422 6869.3979 11.6559 11.7886 101.14
29 7917.4209 7915.5781 -1.8432 -1.8627 101.06

30 7234.2500 7234.0503 -0.1999 -0.1951 97.60

32 9528.8154 9524.2793 -4.5362 -4.5813 100.99
33 8521.5078 8519.2793 -2.2284 -2.2479 100.87

35 13328.4648 13313.4756 -14.9890 -15.1629 101.16
36 12091.2314 12078.0068 -13.2240 -13.4191 101.48

38 24661.4980 24655.7090 -5.7900 -5.8771 101.50
39 44231.0664 44216.4844 -14.5820 -14.6867 100.72
41 7349.5332 7360.5088 10.9759 11.1105 101.23

42 6920.5278 6933.3154 12.7876 12.9437 101.22

44 5998.6514 6002.9941 4.3431 4.3626 100.45
45 5762.5107 5766.1030 3.5926 3.6052 100.35
47 7016.8979 7015.6587 -1.2395 -1.2541 101.18

48 6822.9614 6821.6592 -1.3021 -1.3206 101.42

50 9706.9951 9698.9512 -8.0441 -8.1429 101.23
51 9639.7490 9635.4424 -4.3074 -4.3936 102.00

53 13634.0996 13639.1523 5.0520 5.0038 99.05
54 19874.8652 19890.2988 15.4340 15.6328 101.29

56 6080.3931 6072.7539 -7.6394 -7.7092 100.91
57 6121.4121 6113.9985 -7.4135 -7.4844 100.96

59 5832.8320 5821.2344 -11.5977 -11.6574 100.51
60 6266.5615 6258.7642 -7.7975 -7.7942 99.96

62 7041.7285 7013.7329 -27.9954 -28.0377 100.15
63 8230_6123 8198.7266 -31.8861 -31.7483 99.57
65 4816.1909 4813.8467 -2.3441 -2.3284 99.33

66 4787.5654 4785.6367 -1.9285 -1.9140 99.25

68 3537.2024 3539.0366 1.8343 1.6791 91.54
69 3692.9880 3693.5674 0.5792 0.4403 76.02

71 6541.8232 6513.9009 -27.9225 -27.8763 99.83
72 6643.3184 6607.5918 -35.7266 -35.7195 99.98

74 3872.7605 3867.7478 -5.0126 -5.0961 101.67

75 3820.6963 3816.2607 -4.4354 -4.5159 101.81
77 3918.9607 3895.5271 -23.4338 -23.7037 101.15

78 3932.8000 3910.9468 -21.8533 -22.0988 101.12
80 6240.3853 6241.1948 0.8092 1.0177 125.77

81 6158.4619 6161.7666 3.3047 3.5143 106.34
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Table

Element

No.

5.4 SDSA result of cap (6b 4 = 0.01

¢l(b) _#2(b+6b) a¢ ¢'

b4 ]

_' i A_ %

1 9829.4561 9810.4717 -18.9851 -19.4508 102.45

2 9631.2031 9610.7295 -20.4731 -21.0685 102.91
4 10620.3320 10587.9111 -32.4210 -33.3971 103.01

5 11444.4805 11407.4258 -37.0540 -37.9746 102.48
7 13584.5713 13559.0742 -25.4970 -26.6974 104.71

8 13641.4951 13619.3652 -22.1300 -23.4074 105.77
10 17933.5918 17918.0254 -15.5650 -16.7295 107.48
11 18498.6309 18419.2637 -79.3670 -81.7017 102.94

13 21202.2637 21150.9668 -51.2960 -51.9958 101.36
14 34270.5156 34156.6523 -113.8600 -114.5121 100.57

16 8367.4824 8375.4043 7.9224 7.9947 100.91
18 9686.1113 9675.7295 -10.3823 -10.8857 104.85
20 12670.2480 12660.3047 -9.9430 -10.4947 105.55

22 16248.4053 16184.9961 -63.4090 -65.4988 103.30
24 30901.3691 30752.9316 -148.4370 -150.1576 101.16

26 7311.4082 7336.8804 25.4722 26.0116 102.12
27 6857.7422 6888.4829 30.7407 31.4542 102.32

29 7917.4209 7926.6357 9.2148 9.2795 100.70
30 7234.2500 7248.9258 14.6758 14.9177 101.65

32 9528.8154 9532.2305 3.4143 3.1926 93.51
33 8521.5078 8534.4688 12.9608 12.8673 99.28

35 13328.4648 13269.6406 -58.8240 -60.4650 102.79
36 12091.2314 11981.8135 -109.4180 -112.4852 102.80

38 24661.4980 24540.0820 -121.4170 -122.7929 101.13
39 44231.0664 43895.4648 -335.6030 -338.8092 100.96
41 7349.5332 7383.2383 33.7054 34.4662 102.26

42 6920.5278 6958.1396 37.6118 38.4753 102.30
44 5998.6514 6016.1729 17.5218 17.6665 100.83

45 5762.5107 5780.8560 18.3455 18.5229 100.97
47 7016.8979 7023.3779 6.4799 6.3809 98.47

48 6822.9614 6831.4014 8.4401 8.2318 97.53
50 9706.9951 9695.8291 -11.1656 -11.3823 101.94

51 9639.7490 9582.1875 -57.5616 -58.8557 102.25
53 13634.0996 13605.0771 -29.0230 -28.3287 97.61
54 19874.8652 19792.4883 -82.3770 -81.2261 98.60

56 6080.3931 6078.3975 -1.9959 -2.0529 102.86
57 6121.4121 6118.0645 -3.3476 -3.5283 105.40

59 5832.8320 5890.1143 57.2822 57.5277 100.43

60 6266.5615 6299.0898 32.5284 32.8157 100.88

62 7041.7285 7040.2134 -1.5150 -1.9730 130.23
63 8230.6123 8232.1367 1.5245 1.5572 102.15

65 4816.1909 483312881 17.0975 17.1449 100.28
66 4787.5654 4802.5879 15.0226 15.0032 99.87

68 3537.2024 3524.7373 -12.4651 -14.1661 113.65

69 3692.9880 3681.6091 -11.3789 -12.7450 112.01
71 6541.8232 6555.9077 14.0842 15.1211 107.36

72 6643.3184 6667.5093 24.1911 25.1206 103.84

74 3872.7605 3848.7979 -23.9627 -24.6826 103.00
75 3820.6963 3796.8833 -23.8130 -24.5173 102.96
77 3918.9607 3855.9199 -63.0408 -63.6786 101.01

78 3932.8000 3874.9827 -57.8174 -58.3854 100.98
80 6240.3853 6289.5522 49.1670 50.0093 101.71
81 6158.4619 6211.9331 53.4710 54.2004 101.36
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Table 5.5 SDSA result of cap (ab 5 = 0.01 b5)

1 9829.4561 9802.9561 -26.5004 -27.0010 101.89

2 9631.2031 9595.9111 -35.2916 -35.8374 101.55
4 10620.3320 10546.0557 -74.2760 -74.8574 100.78
5 11444.4805 11367.7676 -76.7120 -77.1947 100.63
7 13584.5713 13510.9492 -73.6220 -74.211i 100.80
8 13641.4951 13570.5430 -70.9520 -71.5026 100.78

10 17933.5918 17879.8633 -53.7270 -54.0194 100.54

11 18498.6309 18389.1309 -109.4990 -110.8678 101.25
13 21202.2637 21148.3887 -53.8740 -54.1483 100,51

14 34270.5156 34156.6602 -113.8550 -114.2009 100.30
16 8367.4824 8388.7510 21.2690 20.8644 98.10
18 9686.1113 9645.8008 -40.3106 -40.7077 100.99
20 12670.2480 12631.4023 -38.8460 -39.0897 100.63

22 16248.4053 16162.7207 -85.6840 -86.8264 101.33
24 30901.3691 30764.2402 -137.1280 -137.8016 100.49
26 7311.4082 7362.9214 51.5132 51.6057 100.18

27 6857.7422 6920.4775 62.7355 63.2072 100.75
29 7917.4209 7919.1987 1.7778 1.6553 93.11
30 7234.2500 7245.0146 10.7644 10.8633 100.92

32 9528.8154 9518.2754 -10.5404 -10.8552 102.99
33 8521.5078 8522.6904 1.1824 0.9209 77.88

35 13328.4648 13252.8418 -75.6230 -76.5759 101.26
36 12091.2314 11975.1992 -116.0320 -118.1623 101.84

38 24661.4980 24560.5371 -100.9610 -101.1912 100.23
39 44231.0664 43939.9414 -291.1280 -292.6463 100.52

41 7349.5332 7411.3936 61.8607 62.3042 100.72
42 6920.5278 6991.7363 71.2084 71.7986 100.83
44 5998.6514 6026.8384 28.1871 27.4530 97.40
45 5762.5107 5788.8179 26.3074 25.5871 97.26
47 7016.8979 7016.3887 -0.5095 -1.1456 224.85

48 6822.9614 6823.3560 0.3944 -0.2967 -75.24
50 9706.9951 9678.2988 -28.6966 -28.9315 100.82
51 9639.7490 9577.1484 -62.6006 -63.6297 101.64

53 13634.0996 13622.2588 -11.8410 -11.2963 95.40
54 19874.8652 19829.2480 -45.6160 -44.8920 98.41

56 6080.3931 6043.3350 -37.0584 -37.8702 102.19
57 6121.4121 6083.5522 -37.8599 -38.7097 102.24
59 5832.8320 5834.4556 1.6236 1.4159 87.21
60 6266.5615 6254.2261 -12.3355 -12.6039 102.18

62 7041.7285 7010.2183 -31.5098 -31.9934 101.53
63 8230.6123 8199.9434 -30.6690 -31.1236 101.48

65 4816.1909 4800.9663 -15.2245 -15.3757 100.99
66 4787.5654 4773.9321 -13.6332 -13.8333 101.47
68 3537.2024 3491.1245 -46.0778 -46.9806 101.96

69 3692.9880 3647.6543 -45.3339 -46.1900 101.89
71 6541.8232 6485.1753 -56.6482 -57.1210 100.83
72 6643.3184 6585.5400 -57.7782 -58.2778 100.86

74 3872.7605 3842.9790 -29.7814 -30.1544 101.25
75 3820.6963 3793.8799 -26.8164 -27.1935 101.41

77 3918.9607 3837.8706 -81.0903 -81.7043 100.76
78 3932.8000 3854.9622 -77.8380 -78.4221 100.75
80 6240,3853 6181.7236 -58.6616 -59.4112 101.28
81 6158.4619 6100.1362 -58,3259 -59.0764 101.29
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Table 5.6 SDSA result of cap (6b 6 = 0.01 b6)

Element ¢I(b) ¢2(b+ ab) a¢ _' ¢'Ia¢ %
No.

I 9829.4561 9645.1406 -184.3160 -185.0050 100.37

2 9631.2031 9448.7637 -182.4395 -182.9045 100.25
4 10620.3320 10370.8418 -249.4900 -252.2224 101.10
5 11444.4805 11167.7920 -276.6880 -280.2100 101.27

7 13584.5713 13112.6143 -471.9570 -483.5931 102.47

8 13641.4951 13108.0293 -533.4660 -549.7704 103.06
10 17933.5918 17045.9434 -887.6470 -935.5160 105.39
11 18498.6309 17520.9824 -977.6480 -1031.8282 105.54

13 21202.2637 20207.2773 -994.9850 -1051.7924 105.71
14 34270.5156 32365.0469 -1905.4670 -2042.3608 107.18
16 8367.4824 8144.6450 -222.8369 -228.5900 102.58

18 9686.1113 9363.5166 -322.5947 -326.8106 101.31
20 12670.2480 12284.7090 -385.5390 -399.8413 103.71

22 16248.4053 16003.2422 -245.1630 -272.3967 111.11
24 30901.3691 30646.2754 -255.0930 -263.7081 103.38
26 7311.4082 7112.8638 -198.5444 -207.4228 104.47

27 6857.7422 6664.1855 -193.5567 -201.8134 104.27
29 7917.4209 7681.1914 -236.2299 -244.i408 103.35

30 7234.2500 7025.5811 -208.6691 -215.6370 103.34
32 9528.8154 9334.0938 -194.7215 -203.9963 104.76

33 8521.5078 8364.0615 -157.4465 -164.1051 104.23
35 13328.4648 13296.3096 -32.1550 -39.2244 121.99

36 12091.2314 11993.4346 -97.7960 -106.1838 108.58
38 2a661.4980 24587.9063 -73.5920 -76.9323 104.54

39 44231.0664 44197.7734 -33.2950 -38.7578 116.41

41 7349.5332 7126.4272 -223.1058 -234.1455 104.95
42 6920.5278 6710.7593 -209.7684 -220.3471 105.04
44 5998.6514 5889.0366 -109.6146 -114.6983 104.64

45 5762.5107 5652.7495 -109.7611 -1i4.4531 104.27
47 7016.8979 6971.7676 -45.1306 -48.8590 108.26
48 6822.9614 6784.2798 -38.6814 -41.3258 106.84

50 9706.9951 9737.3701 30.3747 29.6068 97.47
51 9639.7490 9622.7080 -17.0413 -19.3617 113.62

53 13634.0996 13557.6035 -76.4960 -80.1318 104.75
54 19874.8652 19808.9277 -65.9380 -70.2234 106.50
56 6080.3931 6092.9956 12.6023 11.4889 91.16

57 6121.4121 6135.0459 13.6338 13.0032 95.37
59 5832.8320 5877.4746 44.6423 46.1051 103.28
60 6266.5615 6292.0049 25.4433 26.2115 103.02

62 7041.7285 6926.6460 -115.0823 -!19.1297 103.52

63 8230.6123 8148.9111 -81.7017 -84.3816 103.28
65 4816.1909 4847.5229 31.3322 31.6223 100.93

66 4787.5654 4822.7505 35.1850 35.7694 101.66

68 3537.2024 3529.2158 -7.9867 -7.2879 91.25
69 3692.9880 3685.4299 -7.5582 -6.8735 90.94

71 6541.8232 6422.3330 -119.4903 -123.0419 102.97
72 6643.3184 6532.9399 -110.3782 -113.4852 102.81
74 3872.7605 3894.5361 21.7756 22.1621 101.77

75 3820.6963 3844.7844 24.0882 24.5273 101.82

77 3918.9607 3875.0320 -43.9289 -44.2824 100.80
78 3932.8000 3890.7434 -42.0568 -42.3491 100.69

80 6240.3853 6135.0898 -105.2954 -108.3117 102.86
81 6158.4619 6055.4053 -103.0568 -105.9788 102.84



Table 5.7 Grading system for accuracy of SDSA results

Grade Measure of accuracy (%) Remark

A 95 - 100 or 105 - 100 Excellent

B 90 - 95 or 110 - 105 good

C 80 - 90 or 120 - 110 fair

D 60 - 80 or 140 - 120 poor

F 60 below or 140 above fail

103

Table 5.8 Accuracy of cap SDSA results

Design/ Grade A B C D F
Parameter

1 50 2 1

2 52

3 50 1

4 47 3 2

5 48 1 1

6 44 7 2

Average % 91.51 4.4 1.89 1.57 .63
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Table 5.9 SDSA result of dam (_b I = 1.)

Element el(b)

No.

¢2(b+ab) a¢ ¢' _'/a¢ %

1

2

3

4

5

6

7
8

9
10

11
12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32
33

34
35

36

3284.0591

3222.6718

3072.1229

2833.7039

2522, O753

2237,8580

1391,,9795
1385,6221

1437,,7149
1630,0650

2217,,7237
3868,5193

849,1099
896,5193

1110.0775

1568.0970
2480.5522

4491.5432

408.2423

367.1587

605.7484

1179.8964

2181.3805

4019.3998

315.6617

227.6064

162.4746

791.1302

1829.2332

3007.7604

432.2839

299.2437

193.7593

762.8365
1691.5086

2023.5946

3320.0749 36.0158 35.6276

3251.5279 28.8561 28.7459

3092.0488 19.9259 20.0038

2846.8793 13.1754 13.3049

2531.0695 8.9942 9.1139
2244.3653 6.5073 6.5990

1402.4054 10.4259 10.9661
1392.1607 6.5386 6.8183

1446.1003 8.3854 8.5148
1642.8852 12.8202 12.8787

2234.8147 17.0910 17.1546
3888.6801 20.1608 20.2647

847.8412 -1.2687 -0.8195

896.0454 -0.4739 -0.2845

1115.9381 5.8606 5.9530

1580.5570 12.4600 12.5344

2498.2000 17.6478 17.7286

4512.1864 20.6432 20.7636

412.3365 4.0942 4.1724

369.4237 2.2650 2.3107

608.8671 3.1188 3.1852

1190.5477 10.6513 10.7096

2196.7481 15.3676 15.4456

4035.9958 16.5960 16.6916

320.6403 4.9786 5.0102

229.7064 2.1000 2.1203

164.2285 1.7540 1.7871

800.5816 9.4513 9.4912

1842.1167 12.8835 12.9302

3018.8957 11.1353 11.1821

438.5233 6.2393 6.2369

302.1908 2.9471 2.9534

195.1672 1.4079 1.4401

772.5178 9.6813 9.6989

1701.7312 10.2226 10.2390

2029.8289 6.2343 6.2449

9892

99,,62

10039

I0098

101,33
101,,41

105,,18
104.28

101.54
100.46

100.37
100.52

64.59

60.03

101.58

100.60

100.46

100.58

101.91

102.02

102.13

100.55

100.51

100.58
100.64

100.97

101.89

100.42
100.36

100.42
99.96

100.21
102.28

100.18
100.16

100.17
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Table 5.10 SDSA result of dam (6b 6 : I.)

Element
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36

el(b) ¢2(b+(Sb) A¢ ¢'

3284.0591
3222.6718
3072.1229
2833.7039
2522.0753
2237.8580
1391.9795
1385.6221
1437.7149
1630.0650
2217.7237
3868.5193
849.1099
896.5193

1110.0775
1568.0970
2480.5522
4491.5432
408.2423
367.1587
605.7484

1179.8964
2181.3805
4019.3998

315.6617
227.6064
162.4746
791.1302

1829.2332
3007.7604
432.2839
299.2437
193.7593
762.8365

1691.5086
2023.5946

3312.9618

3246.0932

3092.4405

2855.1223

2545,9829

2256,2434

1473,2713
1447,,4259

1490,2216

1689,4299

2306,5277

3970,1118

928,4739

980,,3655

11929019
1658,,2041

2594,9092

4607,,8203

444,3692

414,,0684

668.1493

1285.1092
2307.8314

4124.5170
332.5270

251.6585

188.6715

884.3773

1942.4777

3085.3240

451.1231

322.9086

219.3403

849.1600
1778.1588

2065.9436

28.9027
23.4214
20.3176
21.4148
23.9076
18.3854
81.2918
61.8038
52.5O67
59.3649
88.8040

101.5925
79.3639
83.8463
82.8244
90.1071

114.3570
116.2771
36.1269
46.9097
62.4009

105.2128
• 126.4509

105.1172
16.8653
24.0520
26.1969
93.2471

113.2445
77.5636
18.8392
23.6648
25.5810
86.3236
86.6502
42.3490

28.0431
22.6306
19.4847
20.5306
23.0857
17.7859
78.1019
58.7149
48,,6731
546097
84,,4494
997862
769862
818211
79,,5474
851996

1087781
i135485

359491
46,,5383
613056

100,,8139
1215719
102,,5892

17,,0255
243484
26,,4448
89,,7895

1096133
75.6940
18.2221
23.2052
25.1103
83.1939
83.9812
41.2850

¢'/A¢ %

97.03

96.62

95.90

95.85

96.56

96.74

96.08
95.00

92.70

91.99

95.10

98.22
97.00

97.58

96.04
94.55

95.12

97.65

99.51

99.21
98.24

95.82

96.14

97.60

100.95

101.23
100.95

96.29

96.79

97.59
96.72

98.06

98.16

96.37

96.92

97.49
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El ement
No.

Table 5.11 SDSA result of dam (6b 8 = 1.)

--.--.----...J

_i (b) _2 (b+ 6b) A_ _' _'/_

1 3284.0591 3368.4606 84.4013 82.1666 97.35
2 3222.6718 3305.7711 83.0993 80.9006 97.35
3 3072.1229 3151.2767 79.1538 77.0658 97.36
4 2833.7039 2905.0773 71.3734 69.4902 97.36
5 2522.0753 2579.5546 57.4793 56.0116 97.45
6 2237.8580 2276.4412 38.5832 38.0073 98.51
7 1391.9795 1458.2192 66.2397 64.4983 97.37
8 1385.6221 1452.8173 67.1952 65.4650 97.43
9 1437.7149 1508.7035 70.9886 69.2362 97.53

I0 1630.0650 1709.0774 79.0124 76.9683 97.41
Ii 2217.7237 2299.3133 81.5896 78.7987 96.58
12 3868.5193 3934.0171 65.4978 64.2006 98.02
13 849.1099 891.4919 42.3819 41.2894 97.42
14 896.5193 938.3750 41.8557 40.8448 97.58
15 1110.0775 1154.3651 44.2876 43.5476 98.33
16 1568.0970 1629.1954 61.0984 60.4206 98.89
17 2480.5522 2571.0300 90.4778 87.6175 96.84
18 4491.5432 4566.7587 75.2155 73.9283 98.29
19 408.2423 418.5146 10.2723 10.2500 99.78
20 367.1587 379.0717 11.9130 11.8541 99.51
21 605.7484 617.6857 11.9374 11.9054 99.73
22 1179.8964 1192.2191 12.3227 13.1478 106.70
23 2181.3805 2229,2297 47.8492 47.6531 99.58
24 4019.3998 4106.0654 86.6656 85.3704 98.51
25 315.6617 316.1967 0.5350 0.7631 142.63
26 227.6064 231.3131 3.7067 3.7950 102.38
27 162.4746 168.0447 5.5701 -2.6494 -47.51
28 791.1302 775.6976 -15.4326 -14.6287 94.79
29 1829.2332 1843.2662 14.0330 14.9975 106.87
30 3007,7604 3094.5563 86.7959 85.1310 98.08
31 432.2839 430.2093 -2.0747 -1.8160 87.53
32 299,2437 302.5506 3.3069 3.3256 100.57

33 193.7593 205.0245 11.2652 10.8163 96.02

34 762.8365 745.4213 -17.4151 -16.7573 96.22

35 1691.5086 1710.5108 19.0022 19.2676 101.40

36 2023.5946 2099.8357 76.2411 73.9607 97.01
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Table 5.12 SDSAresult of dam =I.)

Element _l(b)

No.

¢2(b+ab) A_ _'Ia¢ %

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

1 3284.0591

2 3222.6718
3 3072.1229

4 2833.7039

5 2522.0753

2237.8580

1391.9795

1385.6221

1437.7149

1630.0650

2217.7237
3868.5193

849.1099

896.5193

1110.0775

1568.0970

2480.5522

4491.5432

408.2423

367.1587

605.7484

1179.8964

2181.3805

4019.3998

315.6617

227.6064

162.4746

791.1302

1829.2332

3007,,7604

432,,2839

299,,2437

193,7593

762,,8365

1691,,5086

20235946

3302.7846

3241.0465

3089.6849

2850.0040

2536.6047

2249,9478

1413,1024

1406,2787

1457,2281

1648,,1300

2234,9786
3886,,0853

873,7872

920,,7519

1132,,8935

1588,5071

24981146

4505,8741

434,4618

389,7231

629,0860

1198.0929

2192.5041

4021.7719

342.8319

247.6939

178.8706

802.7410

1829.9917

2997.1849

445.8758

306.6395

200.9759

763.4738

1680.6830

2007.8868

18.7255

18.3747
17.5620

16.3001

14.5294

12.0898

21.1229

20.6566

19.5132
18.0650

17.2549
17.5660

24.6772
24.2327

22.8160
20.4101

17.5624
14.3309

26.2195

22.5644

23.3376

18.1965

11.1236

2.3721

27.1703

20.0875

16.3960

11.6108

0.7585

-10.5755

13.5919

7.3958

7.2166

0.6373

-10.8256

-15.7078

18.7017

18.3490

17.5341

16.2666

14,4982

12,0565

20,9071

20,,4545

19,3301

178890

17,1019
17,,4167

24,,1049

237180

22,,3780

20.0515

17.2490

13.9972

25.2247
21.7523

22.5478

17.6426

10.6904

1.8901

25.2873

18.6834

15.4120

11.0444

0.3253

-11.0729

10.9440

5.5755

6.4887

0.2521

-11.2073

-16.0825

99.87

99.86
99.84

99.79
99.78

99.72

98.98

99.02

99.06
99.03

99.11
99.15

97.68
97.88

98.08
98.24

98.22
97.67

96.21
96.40

96.62
96.96

96.11

79.68

93.07

93.01

94.00

95.12

42.89

104.70

80.52

75.39

89.91

39.56

103.53

102.39
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Table 5.13 SDSAresult of dam C6b17: 1.)

Element ¢1(b)
No.

¢2(b+6b) A¢ ¢' _'/A_ %

1 3284.0591
2 3222.6718

3 3072.1229
4 2833.7039

5 2522.0753

6 2237.8580
7 1391.9795

8 1385.6221

9 1437.7149

10 1630.0650

11 2217.7237

12 3868.5193

13 849.1099

14 896.5193

15 1110.0775
16 1568.0970

17 2480.5522

18 4491.5432
19 408.2423

20 367.1587

21 605.7484

22 1179.8964

23 2181.3805

24 4019.3998

25 315.6617

26 227.6064

27 162.4746

28 791.1302

29 1829.2332

30 3007.7604

31 432.2839

32 299.2437

33 193.7593

34 762.8365

35 1691.5086

36 2023.5946

3334.3333

3228.7751

3063.6641

1818.7867

2504.7272

2221.2152

1454.3840

1394.7846

1414.4755

1601.2571
2192.6886

3843.0828
892.8145

906.0073

1095.5022

15447465

2456,,1186

4466,7743

421,,5974

3708441

598,,0754

11635275

2163.4864

4003.1438

318.7416

228.0388

157.7432

779.7913

1817.7857

2999.5662

430.3953

297.4850

190.2163
755.2437

1685.5902

2021.1511

50.2742 52.7840 104.99

6.1033 7.1940 117.87

-8.4588 -7.9612 94.12

-14.9172 -14.6364 98.12

-17.3481 -17.1898 99.09

-16.6428 -16.5708 99.57

62.4045 62.5737 100.27

9.1625 8.9156 97.31

-23.2394 -23.3552 100.50

-28.8079 -28.7928 99.95

-25.0351 -24.9570 99.69

-25.4365 -25.3299 99.58

43.7046 43.4565 99.43

9.4881 9.3537 98.58

-14.5753 -14.6561 100.55

-23.3505 -23.3685 100.08
-24.4336 -24.4172 99.93

-24.7689 -24.7409 99.89

13.3551 13.1792 98.68
3.6854 3.6497 99.03

-7.6730 -7.7377 100.84
-16.3689 -16.4132 100.27

-17.8941 -17.9051 100.06

-16.2560 -16.2346 99.87

3.0799 2.9784 96.71

0.4324 0_4101 94.85

-4.7314 -4.7700 100.81

-11.3389 -11.3648 100.23

-11.4475 -11.4200 99.76

-8.1942 -8.1557 99.53

-1.8886 -1.9175 101.53

-1.7587 -1.7678 100.52

-3.5430 -3.5593 100.46

-7.5927 -7.5804 99.84

-5.9184 -5.8917 99.55

-2.4435 -2.4265 99.30
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Table 5.14 SDSA result of dam (6b23 : 1.)

Element ¢1(b)

No.

¢2(b+6b) a¢ ¢' ¢'/A¢ %

1

2
3

4

5

6

7
8

9
10

11
12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

3284.0591

3222.6718

3072.1229

2833.7039

2522.0753

2237.8580

1391.9795
1385.6221

1437.7149
1630.0650

2217.7237
3868.5193

849.1099
896.5193

1110.0775
1568.0970

2480.5522
4491.5432

408,,2423
367,,1587

605,,7484

1179,,8964

2181,,3805

40193998

315,,6617

227,,6064

162,,4746

791,,1302

1829,,2332

3007,,7604

432,,2839

299,,2437

193,7593

762,,8365

1691,,5086

2023,,5946

3135.5695
3084.7292

2957.6821
2751.9984

2480.1518

2257.4500

1247.4827
1255.7599

1313.8211
1470.1988

2016.1471

3857.0477

737.7980
826.7174

1079.0946
1483.3017

2247.7291
4398,0024

348,7635

331,6168

639,1100

11797407

2018,9984

3880,,9064

283,2211

208,3753

202,7493

807,0017

1731,7105

2889,7431

413,7474

282,1978

184.6920

736.5400

1609.1664

1953.8409

-148.4896 -154.3618
-137.9426 -143.1733

-114.4408 -118.3429
-81.7055 -84.0441

-41.9235 -42.4492

19.5920 20.6115

-144.4968 -150.9704
-129.8622 -135.6612

-123.8938 -127.8412
-159.8662 -162.9114

-201.5766 -204.6921
-11.4716 -6.1475

-111.7119 -116.8805
-69.8018 -73.9387

-30.9829 -31.2537

-84.7953 -82.3836
-232.8231 -236.3811

-93.5408 -90.9669

-59.4788 -61.4816

-35.5419 -37.3715

33.3616 34.3902

-0.1557 4.2108

-162.3921 -164.5883

-138.4934 -140.5792

-32.4406 -33.4773

-19.2311 -20.2386

40.2747 40.6934

15.8714 18.0843

-97.5227 -99.9636

-118.0173 -121.8453

-18.5365 -19.0805

-17.0460 -17.8278

-9.0673 -9.8171

-26.2965 -26.7623
-82.3422 -85.5487

-69.7537 -72.6383

103.95

103.79

103.41

102.86

101.25

105.20

104.48

104.47

103.19

101.90

101.50

53.59

104.63

105.93

100.87
97.16

101.53
97,25

103,37

105,15

103,08
-2704,43

101,35
101,,51

103,20
105,,24

101,,04

113.94
102.50

103.24

102.93

104.59

108.27

I01.77

103.89

104.14
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Table 5.15 SDSA result of dam (ab29 = 1.)

Element el(b)

No.

_2(b+6b) A¢ _' ¢'/A¢ %

I 3284.0591 3269.8326 -14.2265

2 3222.6718 3208.6419 -14.0299

3 3072.1229 3058.5746 -13.5483

4 2833.7039 2820.9856 -12.7183

5 2522.0753 2510.5641 -11.5112

6 2237.8580 2228.1186 -9.7394
7 1391.9795 1373.2102 -18.7694

8 1385.6221 1366.9320 -18.6910

9 1437.7149 1419.2563 -18.4586

10 1630.0650 1611.8206 -18.2444

11 2217.7237 2198.9012 -18.8225

12 3868.5193 3847.8469 -20.6724

13 849.1099 820.9589 -28.1511

14 896.5193 867.5844 -28.9349

15 1110.0775 1081.5093 -28.5682

16 1568.0970 1540.4713 -27.6257

17 2480.5522 2453.6955 -26.8567

18 4491.5432 4464.7821 -26.7611

19 408.2423 373.1913 -35.0510

20 367.1587 333.9398 -33.2189

21 605.7484 566.6782 -39.0701

22 1179.8964 1143.0712 -36.8252

23 2181.3805 2150.1219 -31.2586

24 4019.3998 3995.5021 -23.8977

25 315.6617 278.3871 -37.2745

26 227.6064 195.9260 -31.6804

27 162.4746 128.3625 -34.1121

28 791.1302 748.5170 -42.6132

29 1829.2332 1798.8807 -30.3525

30 3007.7604 2992.6649 -15.0955

31 432.2839 416.5079 -15.7760

32 299.2437 291.9762 -7.2675

33 193.7593 171.8215 -21.9378

34 762.8365 720.2342 -42.6023

35 1691.5086 1670.3612 -21.1474

36 2023.5946 2017.8059 -5.7887

-14.1722
-13.9638

-13.4983

-12.6773

-11.4534
-9.7024

-18.6196

-18.5544

-18.3213

-18.1244

-18.7205

-20.5930

-27.8771

-28.7314

-28.4323

-27.5366

-26.7663

-26.7084

-34.6987

-33.1427

-39.2005

-38.8642

-31.2804

-24.0101

-37.2202

-32.3596

-382132

-429114

-304285

-153229

-154646

-86271

-236933

-429434

-21.2784

-6.0069

99.62

99.53

99.63

99.68

99.50

99.62

99.20

99,,27

99,,26

99,,34

99,,46

9962

99,03

99,,30

99.52

99.68

99.66

99.80

98.99

99.77

100.33

100.11

100.07

100.47
99.85

102.14
112.02

100.70

100.25

101.51

98.03

118.71
108.00

100.80

100.62

103.77
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Table 5.16 SDSA result of dam 16b32 = 1.)

Element ¢l(b)

No,

¢2(b+6b) A¢ ¢' ¢'/A¢ %

6

7

8

9
10

11

12
13

14
15

16

17

18
19

20

21
22

23

24

25

26
27

28

29

30
31

32
33

34

35

36

1 3284,0591

2 3222,6718

3 3072,1229

4 2833,7039

5 2522,0753

2237,8580

1391,9795

1385.6221

1437,7149

1630,0650

2217,7237

3868,5193

849,1099

896,5193

1110,0775

1568,0970

2480,5522

4491,5432
408..2423

367,.1587

605.,7484
1179.8964

21813805

4019,3998

315,.6617

227,6064
162,4746

791,1302

1829,2332

3007,7604
432,2839

299,2437

193,7593
762,8365

1691,5086

2023,5946

3275.4513

3214,1717

3063,8995

2825,9505

2514,9888

2231,7423

1380,5792

1374.1520

1426,0568

1617,9310

2204,2290

3851,5565

835,5471

882,5012

1095,0504

1551,6555

2461,2607

4460,6189

397,1405

3552093

590.7295
11653049

2166..8058

3980.6537

306..7175

217,4732

155.4734

793.9535

1837,5341

2980,0079
427.6688

294,1162

196,6867
797,2865

1730,3873

2022,8917

-8,6078 -8,6959

-8,5001 -8,5890
-8,2234 -8,3109

-7,7534 -7,8472

-7,0865 -7,1723
-6,1157 -6.1845

-11,4003 -11,5101

-11,4701 -11,5792

-11,6581 -11,7557

-12,1340 -12,2317

-13,4947 -13,6161

-16,9628 -17,0944

-13,5629 -13,6890

-14.0181 -14,1468

-15,0271 -15,1760

-16,4415 -16,5949

-19,2915 -19,4332

-30,9243 -31,1457

-11,1018 -11,1493

-11,9494 -12,0129

-15,0189 -15,2004

-14,5915 -14,8192

-14,5747 -14,7992

-38,7461 -39,1072

-8,9442 -8,9755

-10,1332 -10,1940

-7,0012 -7,2312

2,8233 2,4766

8,3009 8,2133

-27,7525 -27,9210

-4,6151 -4,6173

-5,1275 -5,1692

2,9275 2,6656

34,4500 34,4914

38,8787 39,8362

-0,7029 0,5933

101.,02

10105

101.,06

10121

10121

10112

10096

10095

100.,84

100,81

10090

100..78

10093

100..92

10099

10093

10073

100..72

100,.43

100,53

101,21

101,56

101,54

100,93

100,35

100,60

103,28

87,72

98,95

100,61

100,05

100.81

91,06
100.12

102,46

-84,41
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Table 5.17 Accuracy of dam SDSA results

Design/ Grade A B C D
Parameter

1 33 1

2 34 2

3 31 2 1

4 31 1 i

5 34 1 1

6 32 1 1

7 33 1 2

8 33 1 I

Average
% 90.63 3.47 2.43 1.04 2.43
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Table 5.18 SDSA result of stem principal

stem-cement interface (6bI =

stress

O.05b I )

at

Element

No.

¢l(b-6b) ¢2(b+ab) a¢

1 76.900543 56.460739 -18.581640 -18.464475

2 82.513052 71.708536 -9.822287 -9.813846

3 58.618491 57.257835 -1.236960 -1.230819

4 77.667893 76.302438 -1.241323 -1.238894

5 151.866080 151.558090 -0.279991 -0.279657

6 234.502410 234.586710 0.076637 0.076255

7 288.618990 288.704590 0.077818 0.077583

8 149.935880 149.946440 0.009600 0.009577

9 22.994747 18.834729 -3.781835 -3.760668

10 6.502503 6.097777 -0.367932 -0.350528

11 4.146709 3.847933 -0.271614 -0.272375

12 6.199352 6.325688 0.114851 0.114270

13 15.908887 15.899525 -0.008511 -0.008521

14 23.783558 23.770659 -0.011727 -0.011681

15 30.590008 30.581954 -0.007322 -0.007299

16 40.949227 40.947751 -0.001342 -0.001331

Unit:

a¢ =

99.37

99.91

99.50

99.80
99.88

99.51

99.70
99.76

99.44

95.27

100.28

99.49

100.11

99.61

99.68

99.17
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Table 5.19 SDSAresult of stem principal stress at
stem-cement interface (6b 5 = 0.05b5)

Element ¢1(b- ab) ¢2(b+6b) A¢ ¢'
NO.

¢'/_¢ %

1 65.766446 65.748964 -0.021853 -0.021895 100.19

2 77.015386 77.247456 0.290088 0.290202 100.04

3 57.489100 58.533230 1.305163 1.305159 100.00

4 73.944425 79.967627 7.529003 7.530086 100.01

5 156.946100 146.276790 -13.336638 -13.393827 100.43

6 233.407340 234.789800 1.728075 1.705936 98.72

7 285.578180 291.585090 7.508638 7.514403 100.08

8 150.215720 149.706140 -0.636975 -0.637301 100.05

9 20.763746 20.758184 -0.006953 -0.006943 99.86

10 6.257279 6.221053 -0.045283 -0.045298 100.03

11 4.077925 3.917879 -0.200058 -0.199643 99.79

12 5.762586 6.736014 1.216785 1.218482 100.14

13 16_901243 15.065383 -2.294825 -2.286102 99.62

14 23.852331 23.712592 -0.174674 -0.174696 100.01

15 30.291377 30.874121 0.728430 0.730542 100.29

16 40.939714 40.951781 0.015084 0.014666 97.23

Unit: MPa
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Table 5.20 SDSAresult of stem principal stress at
stem-cement interface (_b 8 = 0.05b8)

Element

No.

¢l(b-6b) ¢2(b+ab) A¢ _' ¢'/A¢

1 65.757583

2 77.135088

3 58.032913

4 77.014860

5 151.738610

6 234.598240

7 286.370770

8 150.829660

9 20.760696

10 6.238502

11 3.993641

12 6.255428

13 15.896799

14 23.770586

15 30.499641

16 40.216686

65.758276 0.003465 0.003463
77.133116 -0.009860 -0.009862

58.027792 -0.025605 -0.025607

76.993474 -0.106930 -0.106937
151.694650 -0.219800 -0.219769

234.482250 -0.579950 -0.579742

290.965450 22.973400 22.979219
148.795670 -10.169950 -10.196406

20.761167 0.002355 0.002355

6.239281 0.003892 0.003892
3.994909 0.006344 0.006344

6.259910 0.022412 0.022407

15.912264 0.077325 0.077327
23.784222 0.068180 0.068098

30.676514 0.884365 0.883237

41.617492 7.004030 7.004596

99.95

100.02

100.01

100.01
99.99

99.96
100.03

100.26

99.98

100.01
100.00

99.98
100.00

99.88

99.87

100.01

Unit: MPa
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Table 5.21 SDSAresult
stem-cement

of cement
interface

strain
labI =

energy density
0.05 bl]

at

Element
No.

¢2(b+_b) A_

17
18
19
20
21
22
23
38
39
40
41
42
43
44

0.00501710
0.00211951
0.00233601
0.00349835
0.00525030
0.00261951
0.01980252
0.00675875
0.00350612
0.00289551
0.00424991
0.01239189
0.02868796
0.03414549

0.00434328
0.00197332
0.00224633
0.00351514
0.00528217
0.00262687
0.01979047
0.00602432
0.00318289
0.00276485
0.00423869
0.01236603
0.02865501
0.03412462

-0.00061256
-0.00013290
-0.00008153
0.00001527
0.00002897
0.00000668

-0.00001095
-0.00066767
-0.00029384
-0.00011878
-0.00001021
-0.00002351
-0.00002996
-0.00001897

-0.00061107
-0.00013267
-0.00008139
0.00001515
0.00002886
0.00000666

-0.00001091
-0.00066629
-0.00029304
-0.00011861
-0.00001021
-0.00002343
-0.00002984
-0.00001891

99.76
99.83
99.83
99.24
99.64
99.66
99.63
99.79
99.73
99.85

100.07
99.68
99.62
99.64

Unit: MJ/m3
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Table 5.22 SDSA result of cement strain

stem-cement interface .f6b5 =

energy density

O.05b 5 )

at

Element
No.

¢2(b+ab) At ¢'/A¢ %

17

18

19

20
21

22
23

38
39

40
41

42
43

44

0.00472474

0.00206189

0.00255625

0.00357983

0.00438117

0.00257028

0.01975664

0.00649566

0.00343158

0.00314662

0.00414777

0.01093986

0.02857753

0.03422610

0.00466059

0.00203854

0.00206578

0.00346835

0.00621061

0.00268748

0.01983003

0.00632877

0.00327833

0.00255333

0.00437858

0.01383089

0.02876526

0.03404059

-0.00008019

-0.00002918

-0.00061309

-0.00013935

0.00228680

0.00014649

0.00009173

-0.00020862

-0.00019156

-0.00074162

0.00028850

0.00361379

0.00023466

-0.00023189

-0.00008093

-0.00002919

-0.00061184

-0.00013818

0.00229353

0.00014779

0.00009166

-0.00020853

-0.00019169

-0.00074045

0.00028905

0.00362191

0.00023552

-0.00023231

100.93

100.03

99.80

99.16

100.29

100.89

99.92

99.96

100.07

99.84

100.19

100.22

100.36

100.18

Unit: MJ/m 3
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Table 5.23 SDSA result of cement strain

stem-cement ,interface _{6b8 =

energy density

O.05b 8 ]

at

Element

No.

¢2 (b+_b) A¢ ¢'/_ %

17 0.00468941 0.00469315 0.00001873

18 0.00204680 0.00205041 0.00001801

19 0.00228910 0.00229627 0.00003584

20 0.00349722 0.00351484 0.00008813

21 0.00525102 0.00528050 0.00014738

22 0.00263303 0.00261495 -0.00009037

23 0.02014298 0.01945739 -0.00342796

38 0.00641032 0.00640710 -0.00001610

39 0.00335310 0.00334940 -0.00001849

40 0.00283419 0.00283010 -0.00002046

41 0.00425130 0.00423715 -0.00007078

42 0.01241152 0.01234765 -0.00031935

43 0.02914190 0.02820509 -0.00468403

44 0.03299114 0.03532570 0.01167283

0.00001841

0.00001799

0.00003596

0.00008804

0.00014734

-0.00009047

-0.00343035

-0.00001608

-0.00001866

-0.00002029

-0.00007096

-0.00031938

-0.00468479

0.01167284

98.27

99.86

100.34

99.91

99.97

100.11

100.07

99.89

100.94

99.20

100.24

100.01

100.02

100.00

Unit: MJ/m 3
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Table 5.24 SDSAresult
bone-cement

of cement
interface

strain energy density
(_n9 = 0.05b9)

at

Element
No,

17
18
19
20
21
22
23
38
39
40
41
42
43
44

¢l(b-6b) _u2(b+ab)

0.00249100
0.00129556
0.00134053
0.00297331
0.00653732
0.00619827
0.01230117
0.00504569
0.00212749
0.00200848
0.00361570
0.01097118
0.01663493
0.02245261

0.00286470
0.00134685
0.00137318
0.00296529
0.00652785
0.00619612
0.01230232
0.00584745
0.00223640
0.00207706
0.00361663
0.01097665
0.01664066
0.02245597

0.00026692
0.00003664
0.00002332

-0.00000573
-0.00000677
-0.00000154
0.00000082
0.00057268
0.00007780
0.00004899
0.00000066
0.00000391
0.00000409
0.00000240

0.00026504
0.00003615
0.00002303

-0.00000567
-0.00000670
-0.00000153
0.00000081
0.00056921
0.00007669
0.00004865
0.00000068
0.00000389
0.00000405
0.00000238

¢'/a¢

99.29
98.66
98.76
98.96
98.97
99.17
98.85
99.39
98.58
99.32

103.17
99.59
99.11
99.20

Unit: MJ/m3
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Table 5.25 SDSAresult
bone-cement

of cement
interface

strain energy density at
(6b13 = 0.05b13 )

Element

No,

¢2(b+6b ) A¢ _'

17

18

19

20

21

22
23

38
39

40

41

42

43

44

0.00269022

0.00133079

0.00137036
0.00317454

0.00617504

0.00620436

0.01228661

0.00547893

0.00218966

0.00208308

0.00408091

0.01031683

0.01661703

0.02244699

0.00269710

0.00131805

0.00134392

0.00290071

0.00694455

0.00619064

0.01231715

0.00546737

0.00218430

0.00199452

0.00337671

0.01170512

0.01665964

0.02246155

0.00000574

-0.00001062
-0.00002204

-0.00022819
0.00064125

-0.00001143

0.00002546

-0.00000963

-0.00000447

-0.00007380

-0.00058683

0.00115691

0.00003551

0.00001213

0.00000575 100.11

-0.00001061 99.95

-0.00002221 100.79

-0.00021990 96.37

0.00063969 99.76

-0.00001143 99.98

0.00002545 99.98

-0.00000946 98.27

-0.00000438 97.92

-0.00007375 99.93

-0.00057272 97.60

0.00115518 99.85

0.00003513 98.93

0.00001216 100.17

Unit: MJ/m 3
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Table 5.26 SDSA result
bone-cement

J

of cement

interface
strain energy density

C6b16 : 0-05b16)

at

El ement
No,

17
18
19
2O
21
22
23
38
39
40
41
42
43
44

Unit

¢l(b-_b) ¢2(b+6b)

0.00269489 0.00269197 -0.
0.00132634 0.00132239 -0.
0.00136036 0.00135721 -0.
0.00298132 0.00295640 -0.
0.00652988 0.00653925 O.
0.00642815 0.00596540 -0.
0.01164718 0.01318523 O.
0.00547119 0.00547687 O.
0,00218591 0.00218959 O.
0.00204024 0.00205013 O.
0.00361341 0.00361749 O.
0.01090816 0.01104407 O.
0.01703955 0.01618361 -0.
0.02156807 0.02362472 O.

00000365 -0.00000379

00000494 -0.00000501

00000394 -0.00000538

00003115 -0.00003109

00001172 0.00001146
00057845 -0.00057960

00192257 0.00192358

00000710 0.00000785
00000460 0.00000527

00001236 0.00001201

00000510 0.00000538

00016989 0.00016935

00106993 -0.00107044

00257081 0.00257243

MJ/m 3

¢'/a¢

103.68

101.55
136.60

99.82

97.85
100.20

I00.05

110.49
114.46

97.20

105.44
99.68

100.05

100.06
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Table 5.27 SDSAresult of bone principal stress at
bone-cement interface (6b 9 = 0.05b9)

Element

No,

¢l(b.ab ) ¢2(b+6b) A¢ ¢' ¢'/A¢ %

45

46
47

48
49

50
51

72

73

74

75

76

77

78

5,771703 5.260187 -0,365368 -0,361362

3.437655 3,497112 0,042469 0,042221

6,875564 6.887976 0,008866 0.008797

18.168351 18,162787 -0,003974 -0,003914

29.978807 29,983238 0,003165 0.003132

34,550406 34.552019 0,001152 0,001142

36,989277 36.989106 -0,000122 -0,000122

3,664535 3,711235 0,033357 0,032820

3,941822 3,983808 0,029990 0.029660

5,521963 5.563932 0,029978 0.029663

4,577002 4.593381 0,011700 0.011616

11,514850 11,511817 -0,002166 -0.002145

13,022213 13,022624 0,000294 0,000291

17,572059 17,572424 0,000261 0.000259

98,90

99,42
99.22

98,49

98,96

99,13

99,72

98,39

98,90

98,94

99,29

98,99

99,09

99,14

Unit: MPa
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Table 5.28 SDSAresult of bone principal stress at
bone-cementinterface (6b13 = 0.05b13 )

E1 ement
No.

45
46

47

48
49

5O

51

72
73

74
75

76

77

78

¢I (b-6b) ¢2(b+ab) A¢ _'

5.493359 5.496115 0.002296 0.002320
3.462200 3.478236 0.013363 0.013394

6.973965 6.781051 -0.160762 -0.161116

16.783281 19.638211 2.379108 2.377839
30.228846 29.631530 -0.497763 -0.494234

34.525239 34.580757 0.046265 0.046103

36.986492 36.991465 0.004144 0.004223

3.688663 3.685393 -0.002724 -0.002703

3.966744 3.961500 -0.004370 -0.004402

5.568287 5.515670 -0.043847 -0.043884
4.154287 5.073113 0.765688 0.764854

11.507936 11.532850 0.020762 0.020498

13.024097 13.021860 -0.001864 -0.001914

17.580469 17.563570 -0.014083 -0.014096

¢'/A¢ %

101.02

100.23

100.22

99.95
99.29

99.65

101.91

99.21
100.75

100.08

99.89
98.73

102.68
100.10

Unit: MPa
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Table

i

5.29 SDSA result of bone principal

bone-cement interface .f6b16 =

stress at

0.05b16]

Element

No.

C2(b+ab) a¢ ¢'Ia_

45 5.496148 5.493129 -0.003774 -0.003771
46 3.471087 3.468513 -0.003218 -0.003217

47 6.884771 6.879792 -0.006224 -0.006216

48 18.172716 18.158368 -0.017935 -0.017926
49 30.015334 29.946908 -0.085533 -0.085418

50 34.794152 34.307064 -0.608860 -0.609594
51 34.152319 39.960259 7.259925 7.255245

72 3.687167 3.688075 0.001135 0.001134

73 3.964230 3.965543 0.001641 0.001639

74 5.542266 5.547429 0.006455 0.006446

75 4.590863 4.579241 -0.014527 -0.014491

76 11.477098 11.553421 0.095404 0.095253

77 13.167909 12.857647 -0.387828 -0.387498

78 16.591005 18.630912 2.549884 2.546602

99.

99.

99.

99.

99.

100.

99.

99
99

99
99

99

99

99

92

96

87

95

87

12

94
91

9O

86
75

84

92

87

Unit: MPa
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Table 5.30 Accuracy of hip joint SDSA results

Design/ Grade A B C D
Parameter

i 14
5 14

8 14
I 14

5 14
8 14

9 14

13 14

16 11
9 14

13 14

16 14

I I I

Average % 98.2 0.6 0.6 0.6 0.0
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CHAPTER 6

SHAPE DESIGN OPTIMIZATION

6.1 Engine Bearing Cap

Shape optimal design of anengine bearing cap [6,39] is investigated

using the method proposed. The finite element model used for the engine

bearing cap is shown in Fig. 6.1. Half of the model is used for

analysis and design, due to structural symmetry in the thickness

direction. The thickness of the bearing cap is assumed to be uniform,

with magnitude 23.825 mm. The cap is clamped to the bulkhead by two

bolts. Each bolt applies a compressive load of 65,725 N [6] in the

cap. This bolt load is distributed on the area under bolt head. A

profile of oil film pressure between the journal and bearing cap [6,39]

is shown in Fig. 6.2. The resultant force of the oil film pressure in

the x2-direction is 24,840 N [39], which corresponds to a maximum oil

film pressure of 3,648 psi (or 26.16 MPa). For a cast iron bearing cap,

Young's modulus and Poison's ratio are 100. GPa and 0.3,

respectively. The cap finite element model consists of 116 20-node

isoparametric solid elements, 927 nodes, and 2204 active degrees-of-

freedom.

The bottom of the cap is assumed to be fixed on a rigid bulkhead.

This assumption is justified by the finite element analysis that no x 2-

direction tensile stress is developed in the bottom flat surfaces. The
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"i

/

(a) With hidden lines

(b) Hidden lines removed

Figure 6.1 Engine bearing cap finite element model
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cap remains in firm contact with the journal, even under the highest oil

film pressure load. All other node_ are free to move, except that nodes

in the plane of symmetry are constrained in the x3-direction.

The top surface of the cap is parameterized by a singly-curvatured

Bezier surface, with 3 control points, as shown in Fig. 6.3. The x2-

coordinates of these control points are selected as the first three

design parameters, with first and second control points moving

simultaneously, to obtain a symmetric design, which is considered to be

more conservative than a non-symmetric one. The distance of the center

line of the clamping bolt from the center line of cap is chosen as the

fourth design parameter, while the distance of the cap edge from the

center line of cap is defined as the fifth design parameter.

The boundary displacement method is used to generate five sets of

design velocity fields, corresponding to the five shape design

parameters. For the first three sets of velocity fields, boundary

velocities are determined by perturbing the x2-coordinates of each

control point a unit magnitude in Eq. 3.2.17. The associated domain

velocity fields are obtained by solving Eq. 4.1.3 for each set. A

boundary layer of 20 (out of 116) elements is constructed for design

parameter 4 (Fig. 6.4) and a boundary layer of 10 elements along the

edge of the cap is defined for design parameter 5 (Fig. 6.5). The

values of initial design parameters are listed in Table 6.1.

6.1.1 Optimization Procedure

The design problem is to minimize total volume of the cap, while

the maximum cap bearing surface displacement in the radial direction is
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Figure 6.4 Boundary layer for design parameter 4
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Figure 6.5 Boundary layer for design parameter 5
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maintained less than 0.0165 mm and the failure criterion for brittle

material [39] is satisfied. The displacement constraint is established

based on the requirement that the allowable clearance between the

journal bearing and cap must be maintained within the range of 0.0012

in. -0.0025 in. The mean clearance is 0.00185 in. and the allowable

deviation is 0.00065 in. (or 0.0165 mm). That is, the cap must not

deform over 0.0165 mm in the radial direction at the bearing surface for

proper lubrication.

The material failure criterion is expressed as

1 ]2 )2[(°I"°2+ (o2-o3 +
XTX C

(o3_Ol)2] < _ (6.1.1)

where S is the factor of safety, which takes into account the effect of

fatigue and prestressing of the part; XT is the ultimate tensile

strength; XC is the ultimate compressive strength; and Ol, 02, and 03

are three principal stresses. Values used are S = 2., X T = 206.7 MPa,

and XC = 751. MPa. This constraint is applied at each Gaussian point of

each element, except those points near nodes where the clamped bolt

loads are applied, since stresses are not accurate due to the

approximation of bolt load as a concentrated load.

The LINRM program [99,100,101] is used for iterative optimization.

6.1.2 Results and Discussion

It is important that the optimum shape satisfy the displacement

constraint for both static state (only the bolt load is acting) and
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working state (both the bolt load and oil film pressure are acting).

The cap, _ubjected to clamped bolt load, is analyzed with and without

oil film pressure, to study the effect of bolt load and bolt load-oil

film pressure interaction. In Fig. 6.6, the solid line represents cap

deformation due to pure bolt load, while the dashed line represents the

undeformed shape. In this case, the maximumradial displacement is

0.0251 mm. Similarly, Fig. 6.7 shows cap deformation due to bolt load

and oil film pressure, and the maximumradial displacement is 0.0266

mm. Figure 6.7 illustrates that the cap swings to one side, due to non-

symmetric oil film pressure. This side-swing displacement leads to some

difficulties in the shape optimization process. After 5 design

interations, the initial shape (Fig. 6.1) evolves to the shape shownin

Fig. 6.8. The maximumcap displacement constraint becomes0.01796 mm

and the cap total volume becomes94,071 mm3. At this point, the

optimization process seemsto be trapped at a local minimum, since the

design changestep becomesvery small. Further design change only

causes radial displacements to oscillate. The cost and constraint

history are shownin Table 6.2.

A newinitial design of the cap is constructed, as shown in Fig.

6.9. The new design parameters are listed in Table 6.3. The total

volume of this new design is 58,175 mm3. with a maximumdisplacement of

"0.0257 mm. The maximumradial displacement due to bolt load is 0.0191

mm. After 12 design iterations, an optimal shape is reached, as shown

in Fig. 6.10. All constraints and solution convergence criteria are

satisfied. The cost and constraint history are given in Table 6.4. The
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Figure 6.6 Cap deformation due to bolt load only (initial design)

Vwlrb!l___!L_%'/" "\ tl tllJJJJ _- !_ Vr!IkJL j_;" \_,

- rl,,,,,,,,,-/_.__// ' ,

Figure 6.7 Cap deformation due to bolt load and oil film pressure
(initial design)
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Figure 6.8 Design shape of a local minimum



Table 6.1 Shape design parameters of cap design 1

Parameter Initial Final Lower Upper
No. Design Design Bound Bound

1 73. 74.64 30. 76.2

2 73. 62.15 30. 120.0

3 73. 31.46 30. 150.0

4 53.975 57.14 47. 57.15

5 73.025 77.29 65.405 78.105

Unit: mm

135

Table 6.2 Optimization history of cap design 1

Iteration
No.

Cost Maximum Constraint No. of

(Total Volume) (Radial Displacement) Constraint

mm 3 mm Viol ati ons

0 90,782.5 0.02656

1 79,850.0 0.02255

2 84,460.0 0.01982

3 88,624.0 0.01939

4 93,927.0 0.01799

5 94,023.0 0.01796

6

6

3

3

3

3
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(a) Hidden lines removed

(b) With hidden lines

Figure 6.9 Initial- shape of modified cap
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Figure 6.10 An optimum shape of cap (symmetric design)
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Table 6.3 Shape design parameters of cap design 2

Parameter Initial Final Lower Upper
No. Design Desi gn Bound Bound

1 38. 30.90 30. 76.2

2 73. 136.41 30. 150.0

3 73. 20.0 20. 150.0

4 53.975 57.15 47. 57.15

5 73.025 78.10 65.405 78.105

Unit: mm

Table 6.4 Optimization history of cap design 2

Iteration
No.

Cost Maximum Constraint No. of
(Total Volume) (Radial Displacement) Constraint

mm3 mm Violations

0

I

2

3

4

5

6

7

8

9

10

11

12

58,175. 0.02572

66,547. 0.01969

70,274. 0.01747

70,596. 0.01724

71,398. 0.01739

74,702. 0.01697

74,994. 0.01687

74,727. 0.01677

75,751. 0.01676

76,638. 0.01663

77,094. 0.01657

77,327. 0.01653

77,557. 0.01649

4

3

3

3

4

2

2

2

2

2

2

2

0



total volume of this shape is 77,557 mm 3. This optimum shape is quite

different from the one determined when iteration failed. It is also

different from the optimum shape obtained in Ref. 39. However, it

appears similar to the shape obtained by Imam [6].

The reasons behind these two totally different shapes are explained

as follows. Design I, which failed, tends to distribute more material

around the bolt hole, to increase structural stiffness and prevent

displacement due to sideway swing. It removes material from the cap

middle portion, so that deformation due to oil film pressure offsets

deformation due to the bolt clamping load. The successfully optimized

design 2 tends to reduce length of the clamping bolt and consequently

the bolt clamping deformation. It increases material and structural

stiffness in the middle portion of the cap, to reduce deformation due to

oil film pressure. In engineering practice, it is desirable to have

minimum cap deformation due to bolt load, such that good lubrication is

possible when an engine starts to run. It is also desirable to have a

stiff cap, to minimize deformation due to oil film pressure, such that

consistent lubrication can be maintained when an engine is running with

varying oil film pressure. Therefore, the optimal shape obtained in

this work does make engineering sense.

The optimum cap is tested with bolt load to check the bolt clamping

effect. It is found that the maximum cap radial displacement, due to

bolt load, is 0.0129 mm (less than the critical value 0.0165 ram). This

behavior suggests that bolt load need not be considered as a separate

load for design optimization.

139
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In another study, a non-symmetric design is tested, with a bolt

axial force of 53,400 N and the oil film pressure load of Fig. 6.2 (the

maximum pressure is 25.16 MPa.). After 7 iterations, the initial shape

(Fig. 6.1) changes to a non-symmetric shape, as shown Fig. 6.11. The

total volume is 76,290 mm3 and the maximum radial deformation is 0.0124

mm (less than 0.0005 in.). This non-symmetric design is a compromise

between Figs. 6.8 and 6.10. On one side of the cap, more material is

clustered, to increase local structural stiffness and prevent sideway

deformation. On the other side, material is removed to make

deformations due to bolt load and oil film pressure balance.

It seems that a more restrictive cap distortion constraint can be

achieved only through a non-symmetric design. However, from a

conservative design point of view, a non-symmetric design may not be a

favorable choice. To gain further insight into the influence of oil

film pressure, numerical analysis is conducted to test cap deformation,

with the peak oil film pressure at different crank angles. It is found

that the cap deforms much less sideways when the peak oil film pressure

occurs at a larger crank angle. This suggests that a bulkhead design

with the cap mount tilted to gain a larger crank angle may be a more

effective way to reduce cap distortion and cap total volume.

The computational cost is estimated in terms of CPU time of a

VAXI1-780 computer. The main analysis takes 1215. sec., while each

adjoint analysis takes 126. sec. Shape design sensitivity analysis

consumes 24. sec. per constraint per design parameter. In the

optimization process of design 2, with 5 design parameters, there are 12

reanalyses and 33 adjoint analyses. The cost is estimated as



141

(a) Hidden lines removed

'" i

-_.o,

(b) With hidden lines

Figure 6.11 An optimum shape of cap (non-symmetric design)



Total time = 1215. x 12 + 126. x 33 + 24. x 33 x 5

= 22,700. sec.

The cost of the interactive procedure and design velocity field

generation is estimated as roughly 6,000 sec. Therefore, the overall

cost is 28,700 CPU sec. or 8. CPU hours.
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6.2 Doubly-Curved Arch Dam

The physical definition of an arch dam has been described in

Chapter 5, where the arch dam was modeled by 32 design parameters, which

are x2-coordinate of 32 control points that form 2 Bezier surfaces (Fig.

5.9). Accuracy of shape design sensitivity analysis results was tested

for eight design parameters.

As shown in Fig. 5.10, the initial shape of the dam is similar to

that of a gravity dam, a very simple straight model, and sensitivity

analysis was based on this simple model. In carrying out the

optimization study, it was found that the initial shape of a gravity dam

evolves to a shape with a local minimum, a gravity dam with a fillet in

the fixed portion. It did not evolve to a doubly-curved arch dam after

several design iterations, while the cost and constraint violations are

reducing. Therefore, this gravity dam is not used as an initial design

shape. Rather, the optimum shape obtained by Wassermann [7] is used as

an initial design, with analysis done using 20-node quadratic

isoparametric elements. A comparison of analysis results of the

Wassermann's optimal design, using an 8-node model, and the 20-node

model used in this work is given in Table 6.5.
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Table 6.5 Comparison of 8-node and 20-node models
(Wassermann's optimal design)

8-node 20-node
(Wassermann's) (this work)

Total elements 36 36

Total nodes 98 315

Active d.o.f. 216 726
Maximum tensile stress 2.0 MPa 3.9 MPa

design parameters 21 32

Table 6.6 Shape design parameters of arch dam

No. Initial Design Final Design

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21
22

23

24

25
26

27

28

29

30
31

32

115.00

i15.00

111.00

I03.00
128.50

128.50

108.00

72.00

132.50

132.50

101.00

54 50

119 O0

119,,00

83,,00
10,,00

141O0

141O0

138.00
130.00

146.00
146.00

130.00
95.00

155.50
155.50

119.00

74.50

129.DO

129.00

93.00

20.00

108.45

99.51

109.71

98.70

142.14

137.20

122.08

68.49

125.93

127.60

116.82

73.18

97.90

108.22

84.75
12.00

155.49

153.53

154.24
151.76

132.26
141.43

125.68
77.00

139.35
147.33

107.28

59.15

115.64

112.92

90.43

18.01

Unit: meter
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Notice that the highest tensile stress reported using the 20-node

isoparametric finite element model is almost twice that obtained using

an 8-node isoparametric finite element model. Apparently, this

difference is due to the difference in finite elements used.

Furthermore, principal stress as are evaluated at Gaussian points

located in the water pressured surface in this work, while the stress

state presented by Wassermann is in the interior of the arch dam. From

an energy point of view in the finite element method, the stiffness of a

structure that is represented by a larger number of degrees of freedom

will be 'softer'. Meanwhile, it is observed that the dam behaves like a

beam, according to stress distribution over entire dam. That is, the

maximum (compressive or tensile) stress appears on the surface. This

explains the higher stress state obtained with the 20-node model. Based

on this observation, principal stress in the water pressure surface

(upstream) and free surface (downstream) will be used as stress

constraints. When Wassermann's optimal design is modeled by 20-node

finite elements, more than 100 Gaussian points have principal stress

higher than 2000 KPa. In order to accelerate the optimization process,

this initial design is uniformly thickened by 6 meters. This initial

shape is shown in Fig. 6.12 and the corresponding 32 design parameters

are listed in Table 6.6.

6.2.1 Optimization Procedure

The optimization problem is to minimize total volume of the arch

dam, subject to thickness and principal stress constraints. The

thickness constraint is expressed as
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(a) Hidden lines removed

(b) With hidden lines

Figure 6.12 Initial shape of arch dam
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tITi ) : 1. - Ti/Tmin (6.2.1)

r,

Four thickness constraints imposed at the top of the dam. The minimum

thickness (Tmin) is 6. The stress constraint is expressed as

¢(_i) : oi/ST - i. < O, for tensile stress

_I_) = i. - _/S C < O, for compressive stress

Where _i is the i-th principal stress; ST is the concrete tensile

yielding stress, with the value of 2. MPa; and Sc is concrete

compressive yielding stress, with the value of -10. MPa. There are a

total of 1944 stress constraints.

The mathematical programming method applied in this study is LINRM,

which is constructed based on Pshenichny's linearization method

[99,100,101]. In applying LINRM for arch dam surface optimization,

several strategies are used as follows:

(1) Normalization. The cost function is normalized by the cost gradient

norm. That is

F = f/Bdf_

N

Hdf,: Z (drn'dfn)
n=l

where F is the normalized cost, f is the original cost, df is the

gradient of cost, and N is the number of design parameters. Constraint

functionals are normalized to bring all different constraints to a

similar level, by the constraint gradient norm,



A

N '

udgiu = Z (dgi "dgi ]
n=l ,n ,n

A

where $i is the normalized constraint and dgi, n is the gradient of i-th

constraint with respect to n-th design parameter.
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(2) Shifting. A shifting factor may be introduced to increase or reduce

the normalized cost during optimization. A higher shifting factor

may be used in the early stages, to accelerate cost reduction. A

smaller shifting factor may be used when approaching an optimum. It

was noted that a large shifting factor will accelerate cost

reduction in the beginning, but cause cost or constraint fluctuation

in near an optimum. On the other hand, if the shifting factor is

too small, it will take many steps to reach an optimum.

(3) Flexible design parameter upper and lower bounds. For the arch dam,

two Bezier surfaces are defined to parametrize faces of the dam. It

is possible that the design upper bound of one surface may interfere

with the lower bound of another surface and lead to a poor design.

To avoid this potential problem, it is necessary to check all design

bounds after each design iteration. If any interference is found,

the associated design bounds must be changed, to avoid such an

interference. It may take several trials to obtain a reasonable

result. The design bounds must be defined in a manner that will

provide necessary control over the shape change, but also leave

enough space for natural shape growth.
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6.2.2 Results and Discussion

After 18 design iterations, all constraint violations'are

eliminated and cost reduction becomes small. Therefore, the final

design obtained in the 18-th iteration is considered as the optimum,

shown in Fig. 6.13. The final cost (total volume of the dam) is reduced

from the original value of 253,566 m3 to 182,583 m3, which is 8.5 %

lower than Wassermann's 199,610 m3. The maximum tensile stress is

reduced from the original value of 3.084 MPa to 1.981MPa. The design

optimization history is reported in Table 6.7 and Fig. 6.20. Final

design parameters are listed in Table 6.5.

As can be seen from Fig. 6.13, the difference between this optimum

shape and Wassermann's optimum shape is mainly in the bottom portion.

The optimum shape obtained in this work tends to 'grow' fillets in

corners, particulary in the dam bottom area, which is much thicker than

that of Wassermann's design. This thickened shape seems to be more

natural for the base of a cantilever structure. In fact, this shape

also appears in Ref. 30, 37 for a gravity dam, and in Ref. 39 for a

three dimensional cantilever beam. In the crown cross-section, the

region slightly above the middle is thinner than the top. This

phenomenon is also observed in Refs. 30 and 37. In the optimal shape,

it is found that high tensile stress appears in both upstream and

downstream surfaces. In Figs. 6.14-6.19, six element layers are

depicted, to see if any peculiar shape may occur. It is found that

other than the bottom portion, the layer cross sections retain basically

the same pattern as obtained by Wassermann. Wassermann's optimal shape
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(a) Hidden lines removed

(b) With hidden lines

Figure 6.13 Optimal shape of arch dam
a
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Table 6.7. Optimization history of arch dam

Iteration Cost Maximum Constraint No. of
(Total Volume) (Principal stress) Constraint

m3 KPa Violations

0 253,566. 3,084.

1 252,735. 2,943.

2 255,810. 2,502.

3 260,570. 2,264.

4 254,431. 2,130.

5 245,377. 2,085.

6 237,699. 2,019.

7 226,867. 1,998.

8 220,059. 2,118.

9 208,468. 2,005.

I0 198,295. 2,322.

II 188,809. 2,193.

12 181,148. 2,347.

13 180,183. 2,135.

14 184,003. 2,123.

15 183,593. 2,036.

16 182,430. 2,052.

17 182,583. 1,981.

15

15

12

10

7

11

6

0

7

4

9

7

23

18

5

8

7

0
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(a) Hidden lines removed (b) With hidden lines

Figure 6.14 Optimum arch dam element layer 1

\

(a) Hidden lines removed (b) With hidden lines

Figure 6.15 Optimal arch dam element layer 2
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(a) Hidden lines removed (b) With hidden lines

Figure 6.16 Optimumarch damelement layer 3

(a) Hidden lines removed (b) With hidden lines

Figure 6.17 Optimumarch damelement layer 4
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(a) Hidden lines removed (b) With hidden lines

Figure 6.18 Optimumarch damelement layer 5

(a) Hidden lines removed (b) With hidden lines

Figure 6.19 Optimumarch damelement layer 6
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Figure 6.20 Arch dam optimization cost-constraint history
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is highly infeasible, based on the 20-nodes finite element analysis.

However, after 18 iterations of geometric rearrangement, the optimum

shape obtained in this work is 8.5 % lighter than Wassermann's shape.

Computational cost is estimated in terms of CPU time on a VAX11-780

computer. The main analysis consumes 400. sec, each adjoint analysis

consumes 50. sec., and shape design sensitivity analysis takes 10. sec.

per constraint per design parameter. There are a total of 18 reanalyses

and 169 adjoint analyses in the arch dam optimization process, with 32

design parameters. Computer cost is estimated as

Total time = 400. x 18 ÷ 50. x 169 + 10. x 169 x 32

= 69,730. (CPU seconds)

The interactive procedure and velocity generation take roughly 9,000

sec. Therefore, the final cost is 78,730 sec., or 21.87 CPU hours.

Shape design sensitivity is further tested for the final shape.

is found that the quality of sensitivity analysis remains at the same

level as that of the initial shape.

It
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CHAPTER 7

CONCLUSIONS

Automatic regridding using the boundary displacement method and

three dimensional design parametrization, coupled with the unified

theory of shape design sensitivity analysis by the adjoint variable

method is proved feasible and efficient for general three dimensional

elastic solids. Numerical implementation of this sensitivity analysis

method in the existing ANSYS code makes it easy to perform shape design

sensitivity analysis. Versatility of this method is demonstrated by

three examples from different engineering disciplines. Pointwise stress

sensitivity is found to be a special case of domain averaged stress

sensitivity.

A boundary displacement method is presented as a design velocity

field generator for automatic regridding, as well as a mesh generator.

This method provides automatic regridding, with grid orthogonality

preserved, as shown in the fillet problem of Chapter 4. The boundary

layer method, coupled with the boundary displacement method, is shown to

be a straight forward and efficient procedure for shape design

sensitivity analysis. Shape design sensitivity results agree well with

finite difference estimates. The constraint gradient computed by the

central difference method converges to that computed by the material

derivative.
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Shape design parametrizations for two and three dimensional

problems are presented and tested with Bezier'curves and surfaces. The

relationship between design perturbation and domain design velocity

field is also established. The doubly-curved arch dam of Section 6.2

demonstrates the procedure for general surface shape design

optimization, with varying design upper and lower bounds. The engine

bearing cap problem of Section 6.1 shows that different initial designs

may lead to different final designs (local minima). The optimal design

must thus be judged based on engineering practice.

For future study, this unified theory can be extended to many other

continuum shape design problems, such as thermoelasticity for engine

block design, electromagnetic field design [102], aerofoil design [102],

etc. New developments must also scrutinize the regularity and

differentiablity of problems, to ensure existence of design sensitivity,

as it was done in Ref. 35.
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